Tag Archives: air pump vacuum

China high quality Chemical Vacuum Diaphragm Pump Air Operate Double Diaphragm Pump vacuum pump electric

Product Description

Air operated double diaphragm pump

The BQG series of mine diaphragm pumps produced by our company adopts, absorbs and improves the most advanced production technology and technology of pneumatic diaphragm pumps in the world. This product is specially designed for coal mines and has traditional submersible electric pumps, mud pumps, impurity pumps, All the functions of the flexible shaft pump are a revolution of the traditional mine water pump. The key is to completely solve the safety problem of traditional water pump,which can provide high delivery speed even under low air pressure and is compatible with a wide range of materials, and has an anti-stall design, modular air motor / fluid part.

They can be applied in underground mines to discharge clean water or sewage containing CZPT particles (volume concentration less than 2%), and also be used in non-coal mines and other occasions with similar conveying media.

Air operated double diaphragm pump working environment conditions

1. Compressed air for power use, the pressure should be in the range of 0.2 ~ 0.7mpa;

2. The temperature of the conveying medium shall not exceed 40ºC;

3. The PH of the conveying medium is in the range of 4 ~ 10;

4. The maximum diameter of CZPT particles shall not exceed 6 ~ 9mm, and the volume concentration shall not exceed 2%;

5. Ambient temperature: -20ºC ~ 50ºC;

6. Ambient humidity: ≤95% (when ambient temperature is +25ºC);

7. Atmospheric pressure: 80kPa ~ 106kPa;

8. It is suitable for coal mine underground coal dust and methane explosive gas danger place, but does not destroy the insulation corrosive gas place.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Available
Warranty: 3 Years
Transport Package: Normal Packaging
Samples:
US$ 460/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

Vacuum Pump

Types of vacuum pumps

A vacuum pump is a device that draws gas molecules from a sealed volume and leaves a partial vacuum in its wake. Its job is to create a relative vacuum within a specific volume or volume. There are many types of vacuum pumps, including centrifugal, screw and diaphragm.

Forward centrifugal pump

Positive displacement centrifugal vacuum pumps are one of the most commonly used pump types in the oil and gas industry. Their efficiency is limited to a range of materials and can handle relatively high solids concentrations. However, using these pumps has some advantages over other types of pumps.
Positive displacement pumps have an enlarged cavity on the suction side and a reduced cavity on the discharge side. This makes them ideal for applications involving high viscosity fluids and high pressures. Their design makes it possible to precisely measure and control the amount of liquid pumped. Positive displacement pumps are also ideal for applications requiring precise metering.
Positive displacement pumps are superior to centrifugal pumps in several ways. They can handle higher viscosity materials than centrifuges. These pumps also operate at lower speeds than centrifugal pumps, which makes them more suitable for certain applications. Positive displacement pumps are also less prone to wear.
Positive displacement vacuum pumps operate by drawing fluid into a chamber and expanding it to a larger volume, then venting it to the atmosphere. This process happens several times per second. When maximum expansion is reached, the intake valve closes, the exhaust valve opens, and fluid is ejected. Positive displacement vacuum pumps are highly efficient and commonly used in many industries.

Self-priming centrifugal pump

Self-priming centrifugal pumps are designed with a water reservoir to help remove air from the pump. This water is then recirculated throughout the pump, allowing the pump to run without air. The water reservoir can be located above or in front of the impeller. The pump can then reserve water for the initial start.
The casing of the pump contains an increasingly larger channel forming a cavity retainer and semi-double volute. When water enters the pump through channel A, it flows back to the impeller through channels B-C. When the pump is started a second time, the water in the pump body will be recirculated back through the impeller. This recycling process happens automatically.
These pumps are available in a variety of models and materials. They feature special stainless steel castings that are corrosion and wear-resistant. They can be used in high-pressure applications and their design eliminates the need for inlet check valves and intermediate valves. They can also be equipped with long intake pipes, which do not require activation.
Self-priming centrifugal pumps are designed to run on their own, but there are some limitations. They cannot operate without a liquid source. A foot valve or external liquid source can help you start the self-priming pump.

Screw Pump

The mechanical and thermal characteristics of a screw vacuum pump are critical to its operation. They feature a small gap between the rotor and stator to minimize backflow and thermal growth. Temperature is a key factor in their performance, so they have an internal cooling system that uses water that circulates through the pump’s stator channels. The pump is equipped with a thermostatically controlled valve to regulate the water flow. Also includes a thermostatic switch for thermal control.
Screw vacuum pumps work by trapping gas in the space between the rotor and the housing. The gas is then moved to the exhaust port, where it is expelled at atmospheric pressure. The tapered discharge end of the screw further reduces the volume of gas trapped in the chamber. These two factors allow the pump to work efficiently and safely.
Screw vacuum pumps are designed for a variety of applications. In some applications, the pump needs to operate at very low pressures, such as when pumping large volumes of air. For this application, the SCREWLINE SP pump is ideal. Their low discharge temperature and direct pumping path ensure industrial process uptime. These pumps also feature non-contact shaft seals to reduce mechanical wear. Additionally, they feature a special cantilever bearing arrangement to eliminate potential sources of bearing failure and lubrication contamination.
Screw vacuum pumps use an air-cooled screw to generate a vacuum. They are compact, and clean, and have a remote monitoring system with built-in intelligence. By using the app, users can monitor pump performance remotely.
Vacuum Pump

Diaphragm Pump

Diaphragm vacuum pumps are one of the most common types of vacuum pumps found in laboratories and manufacturing facilities. The diaphragm is an elastomeric membrane held in place around the outer diameter. While it is not possible to seal a diaphragm vacuum pump, there are ways to alleviate the problems associated with this design.
Diaphragm vacuum pumps are versatile and can be used in a variety of clean vacuum applications. These pumps are commercially available with a built-in valve system, but they can also be modified to include one. Because diaphragm pumps are so versatile, it’s important to choose the right type for the job. Understanding how pumps work will help you match the right pump to the right application.
Diaphragm vacuum pumps offer a wide range of advantages, including an extremely long service life. Most diaphragm pumps can last up to ten thousand hours. However, they may be inefficient for processes that require deep vacuum, in which case alternative technologies may be required. Additionally, due to the physics of diaphragm pumps, the size of these pumps may be limited. Also, they are not suitable for high-speed pumping.
Diaphragm vacuum pumps are a versatile subset of laboratory pumps. They are popular for their oil-free construction and low maintenance operation. They are available in a variety of styles and have many optional features. In addition to low maintenance operation, they are chemically resistant and can be used with a variety of sample types. However, diaphragm pumps tend to have lower displacements than other vacuum pumps.

Atmospheric pressure is a key factor in a vacuum pump system

Atmospheric pressure is the pressure created by the collision of air molecules. The more they collide, the greater the pressure. This applies to pure gases and mixtures. When you measure atmospheric pressure, the pressure gauge reads about 14.7 psia. The higher the pressure, the greater the force on the gas molecules.
The gas entering the vacuum pump system is below atmospheric pressure and may contain entrained liquids. The mechanism of this process can be explained by molecular kinetic energy theory. The theory assumes that gas molecules in the atmosphere have high velocities. The resulting gas molecules will then start moving in random directions, colliding with each other and creating pressure on the walls of the vacuum vessel.
Atmospheric pressure is a critical factor in a vacuum pump system. A vacuum pump system is useless without proper atmospheric pressure measurement. The pressure in the atmosphere is the total pressure of all gases, including nitrogen and oxygen. Using total pressure instead of partial pressure can cause problems. The thermal conductivity of various gases varies widely, so working at full pressure can be dangerous.
When choosing a vacuum pump, consider its operating range. Some pumps operate at low atmospheric pressure, while others are designed to operate at high or ultra-high pressure. Different types of pumps employ different technologies that enhance their unique advantages.
Vacuum Pump

The screw pump is less efficient in pumping gases with smaller molecular weight

Vacuuming requires a high-quality pump. This type of pump must be able to pump gas of high purity and very low pressure. Screw pumps can be used in laboratory applications and are more efficient when pumping small molecular weight gases. Chemical resistance is critical to pump life. Chemical resistant materials are also available. Chemically resistant wetted materials minimize wear.
Gear pumps are more efficient than screw pumps, but are less efficient when pumping lower molecular weight gases. Gear pumps also require a larger motor to achieve the same pumping capacity. Compared to gear pumps, progressive cavity pumps also have lower noise levels and longer service life. In addition, gear pumps have a large footprint and are not suitable for tight spaces.
Progressive cavity pumps have two or three screws and a housing and side cover. They are also equipped with gears and bearings. Their mechanical design allows them to operate in high pressure environments with extremely low noise. The progressive cavity pump is a versatile pump that can be used in a variety of applications.
Dry screw compressors have different aspect ratios and can operate at high and low pressures. The maximum allowable differential pressure for screw compressors ranges from 0.4 MPa for 3/5 rotors to 1.5 MPa for 4/6 rotors. These numbers need to be determined on a case-by-case basis.

China high quality Chemical Vacuum Diaphragm Pump Air Operate Double Diaphragm Pump   vacuum pump electricChina high quality Chemical Vacuum Diaphragm Pump Air Operate Double Diaphragm Pump   vacuum pump electric
editor by Dream 2024-04-17

China Good quality Micro Vacuum and Air Diaphragm Pump (DC brushless motor) vacuum pump electric

Product Description

Micro Vacuum and Air Diaphragm Pump (DC brushless motor)

♦ 16000M2 modern factory with its own physical property rights, ESD anti-static control dust free workshop, 100+ sets of professional imported equipment
♦  4 major professional and precision laboratories that meet the CNAS national laboratory accreditation standards
♦  More than 50 patents in the micro water pump industry, strong research and development strength, and master advanced industry technology
♦  Complete certification, passed CE, ROHS, REACH, WRAS, Food Grade and other certification

Our Micro Diaphragm Pumps are available with a choice of 4 different drive motors.

A-  Premium duty brush DC motor
lifetime 3,000hours,longer endurance lifetime than other normal DC membrane pump

B-  Economical brush DC motor
lifetime:1,500hours 

C-  Coreless Brushless DC Motor  
A brushless electronically commutated dc motor (electronics integrated in motor), the motor runs vibration and spark free, almost silently, is very dynamic and extremely durable, ideal life-time 15000 hours

D-  Coreless Brushless DC motor with outer controller
With all advantages of coreless brushless DC motor, ideal life-time 15000 hours, and outer controller can realize more control functions of PWM or 0 -5V speed adjustment, brake, ~ instant starting work

H- Brushless DC Motor
Long lifetime 10000hour

Product Specification

Model TM30A-A TM30A-B TM30A-C TM30A-D
Motor type

A–high performance

Brush motor

B–Brush motor C–Brushless  motor D–Brushless motor
Pump Assembly Rated Life 3000hour 1000hour 15000hour 15000hour
Gas flow 6L/min 4.5L/min 4.5L/min 4L/min
Rated Voltage 12V 6/12/24v 6/12/24v 6/12/24v
No-load Current 0.24A 0.4/0.24/0.15A
Media    Most gas
Max Pressure  120kpa
Max Vacuum -70kpa
Ambient Temperature 41 to 158 F(5 to 70C)
Pump size 75.5*30.4*54.6mm 75*31.2*57.5mm 79*31.2*57.5mm 79*31.2*57.5mm
Weight 200g 150g 250g 250g
Inlet&Outlet OD 4.8mm/ID 2.6mm,hose suggestion:ID 4.0mm
Materials

pump head Nylon, 

membrane EPDM , valve EPDM 

pump head Nylon, 

membrane EPDM / PTFE, valve EPDM / FPM

pump head Nylon, 

membrane EPDM / PTFE, valve EPDM / FPM

pump head Nylon, 

membrane EPDM / PTFE, valve EPDM / FPM

Wetted material options

1.Optional membrane materials:
CHINAMFG for normal air 
PTFE for corrosive air,like acid, alkali air, CHINAMFG etc.

2.Optional valve materials:
CHINAMFG for normal air 
FPM for corrosive air, like acid, alkali, ozone,etc.
 

Get more Technical data, Please Send message

CHINAMFG Diaphragm series gas pumps are the perfect combination of form and function. The use of a special diaphragm allows the pump to transfer both air and liquid efficiently. The compact lightweight unit offers optimum sizing for analytical equipment.

 

 ADVANTAGES

♦  High pneumatic performance
♦  Compact size/high power density
♦  Uncontaminated flow – no contamination of the media due to oil-free operation
♦  Maintenance-free
♦  Long product life     
♦  Low sound level
♦  Low power consumption 
♦  Can operate in any orientation
♦  Suction                               

 

The versatility of CHINAMFG pumps allows a wide field of applications to be covered. Over many years our pumps have proved themselves in the following areas:
1.Industrial pressure and vacuum applications
2.Portable Analytical Instruments
3.Medical Equipment
4.Air Quality Sampling Monitors
5.Respiration Monitors

Performance Curve

More About Products

TOPS INDUSTRY AND TECHNOLOGY CO., LIMITED started in 2005, is the world’s leading supplier of micro 

pump solutions, and won the “National High-tech Enterprise”.  The company is mainly engaged in the research and development and manufacture of miniature brushless DC 

pumps and miniature diaphragm pumps. 80% of the products are exported to high-end markets in Europe and 

America, and are mainly used in water heaters, small household appliances, water heating  mattresses, medical  equipment, smart toilets, automobile circulation systems, etc. The company has always been known for its high  quality and high batch consistency, and has established solid and good cooperative relations with many world-renowned brands, such as: Tesla, Whirlpool, Flextronics, Kohler, GE, Roca, KTM, Geberit, etc.

Get more Technical data, Please Send message 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Pump Head Nylon, Membrane EPDM / PTFE, Valve EPDM
Power: Electric
Valve Body Type: Pump Head Nylon, Membrane EPDM / PTFE, Valve EPDM
Function: Electronic Type, Field Bus, Industrial Pressure and Vacuum Applications
Features: Oil-Free,Compact Size, Corrosionresistant, Mainten
More Features: High Efficiency, Can Be Mounted in Any Place
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used in the Automotive Industry?

Yes, vacuum pumps are widely used in the automotive industry for various applications. Here’s a detailed explanation:

The automotive industry relies on vacuum pumps for several critical functions and systems within vehicles. Vacuum pumps play a crucial role in enhancing performance, improving fuel efficiency, and enabling the operation of various automotive systems. Here are some key applications of vacuum pumps in the automotive industry:

1. Brake Systems: Vacuum pumps are commonly used in vacuum-assisted brake systems, also known as power brakes. These systems utilize vacuum pressure to amplify the force applied by the driver to the brake pedal, making braking more efficient and responsive. Vacuum pumps help generate the required vacuum for power brake assistance, ensuring reliable and consistent braking performance.

2. Emission Control Systems: Vacuum pumps are integral components of emission control systems in vehicles. They assist in operating components such as the Exhaust Gas Recirculation (EGR) valve and the Evaporative Emission Control (EVAP) system. Vacuum pumps help create the necessary vacuum conditions for proper functioning of these systems, reducing harmful emissions and improving overall environmental performance.

3. HVAC Systems: Heating, Ventilation, and Air Conditioning (HVAC) systems in vehicles often utilize vacuum pumps for various functions. Vacuum pumps help control the vacuum-operated actuators that regulate the direction, temperature, and airflow of the HVAC system. They ensure efficient operation and precise control of the vehicle’s interior climate control system.

4. Turbocharger and Supercharger Systems: In performance-oriented vehicles, turbocharger and supercharger systems are used to increase engine power and efficiency. Vacuum pumps play a role in these systems by providing vacuum pressure for actuating wastegates, blow-off valves, and other control mechanisms. These components help regulate the boost pressure and ensure optimal performance of the forced induction system.

5. Fuel Delivery Systems: Vacuum pumps are employed in certain types of fuel delivery systems, such as mechanical fuel pumps. These pumps utilize vacuum pressure to draw fuel from the fuel tank and deliver it to the engine. While mechanical fuel pumps are less commonly used in modern vehicles, vacuum pumps are still found in some specialized applications.

6. Engine Management Systems: Vacuum pumps are utilized in engine management systems for various functions. They assist in operating components such as vacuum-operated actuators, vacuum reservoirs, and vacuum sensors. These components play a role in engine performance, emissions control, and overall system functionality.

7. Fluid Control Systems: Vacuum pumps are used in fluid control systems within vehicles, such as power steering systems. Vacuum-assisted power steering systems utilize vacuum pressure to assist the driver in steering, reducing the effort required. Vacuum pumps provide the necessary vacuum for power steering assistance, enhancing maneuverability and driver comfort.

8. Diagnostic and Testing Equipment: Vacuum pumps are also utilized in automotive diagnostic and testing equipment. These pumps create vacuum conditions necessary for testing and diagnosing various vehicle systems, such as intake manifold leaks, brake system integrity, and vacuum-operated components.

It’s important to note that different types of vacuum pumps may be used depending on the specific automotive application. Common vacuum pump technologies in the automotive industry include diaphragm pumps, rotary vane pumps, and electric vacuum pumps.

In summary, vacuum pumps have numerous applications in the automotive industry, ranging from brake systems and emission control to HVAC systems and engine management. They contribute to improved safety, fuel efficiency, environmental performance, and overall vehicle functionality.

vacuum pump

Considerations for Selecting a Vacuum Pump for Cleanroom Applications

When it comes to selecting a vacuum pump for cleanroom applications, several considerations should be taken into account. Here’s a detailed explanation:

Cleanrooms are controlled environments used in industries such as semiconductor manufacturing, pharmaceuticals, biotechnology, and microelectronics. These environments require strict adherence to cleanliness and particle control standards to prevent contamination of sensitive processes or products. Selecting the right vacuum pump for cleanroom applications is crucial to maintain the required level of cleanliness and minimize the introduction of contaminants. Here are some key considerations:

1. Cleanliness: The cleanliness of the vacuum pump is of utmost importance in cleanroom applications. The pump should be designed and constructed to minimize the generation and release of particles, oil vapors, or other contaminants into the cleanroom environment. Oil-free or dry vacuum pumps are commonly preferred in cleanroom applications as they eliminate the risk of oil contamination. Additionally, pumps with smooth surfaces and minimal crevices are easier to clean and maintain, reducing the potential for particle buildup.

2. Outgassing: Outgassing refers to the release of gases or vapors from the surfaces of materials, including the vacuum pump itself. In cleanroom applications, it is crucial to select a vacuum pump with low outgassing characteristics to prevent the introduction of contaminants into the environment. Vacuum pumps specifically designed for cleanroom use often undergo special treatments or use materials with low outgassing properties to minimize this effect.

3. Particle Generation: Vacuum pumps can generate particles due to the friction and wear of moving parts, such as rotors or vanes. These particles can become a source of contamination in cleanrooms. When selecting a vacuum pump for cleanroom applications, it is essential to consider the pump’s particle generation level and choose pumps that have been designed and tested to minimize particle emissions. Pumps with features like self-lubricating materials or advanced sealing mechanisms can help reduce particle generation.

4. Filtration and Exhaust Systems: The filtration and exhaust systems associated with the vacuum pump are critical for maintaining cleanroom standards. The vacuum pump should be equipped with efficient filters that can capture and remove any particles or contaminants generated during operation. High-quality filters, such as HEPA (High-Efficiency Particulate Air) filters, can effectively trap even the smallest particles. The exhaust system should be properly designed to ensure that filtered air is released outside the cleanroom or passes through additional filtration before being reintroduced into the environment.

5. Noise and Vibrations: Noise and vibrations generated by vacuum pumps can have an impact on cleanroom operations. Excessive noise can affect the working environment and compromise communication, while vibrations can potentially disrupt sensitive processes or equipment. It is advisable to choose vacuum pumps specifically designed for quiet operation and that incorporate measures to minimize vibrations. Pumps with noise-dampening features and vibration isolation systems can help maintain a quiet and stable cleanroom environment.

6. Compliance with Standards: Cleanroom applications often have specific industry standards or regulations that must be followed. When selecting a vacuum pump, it is important to ensure that it complies with relevant cleanroom standards and requirements. Considerations may include ISO cleanliness standards, cleanroom classification levels, and industry-specific guidelines for particle count, outgassing levels, or allowable noise levels. Manufacturers that provide documentation and certifications related to cleanroom suitability can help demonstrate compliance.

7. Maintenance and Serviceability: Proper maintenance and regular servicing of vacuum pumps are essential for their reliable and efficient operation. When choosing a vacuum pump for cleanroom applications, consider factors such as ease of maintenance, availability of spare parts, and access to service and support from the manufacturer. Pumps with user-friendly maintenance features, clear service instructions, and a responsive customer support network can help minimize downtime and ensure continued cleanroom performance.

In summary, selecting a vacuum pump for cleanroom applications requires careful consideration of factors such as cleanliness, outgassing characteristics, particle generation, filtration and exhaust systems, noise and vibrations, compliance with standards, and maintenance requirements. By choosing vacuum pumps designed specifically for cleanroom use and considering these key factors, cleanroom operators can maintain the required level of cleanliness and minimize the risk of contamination in their critical processes and products.

vacuum pump

Can Vacuum Pumps Be Used in the Medical Field?

Yes, vacuum pumps have a wide range of applications in the medical field. Here’s a detailed explanation:

Vacuum pumps play a crucial role in various medical applications, providing suction or creating controlled vacuum environments. Here are some key areas where vacuum pumps are used in the medical field:

1. Negative Pressure Wound Therapy (NPWT):

Vacuum pumps are extensively utilized in negative pressure wound therapy, a technique used to promote wound healing. In NPWT, a vacuum pump creates a controlled low-pressure environment within a wound dressing, facilitating the removal of excess fluid, promoting blood flow, and accelerating the healing process.

2. Surgical Suction:

Vacuum pumps are an integral part of surgical suction systems. They provide the necessary suction force to remove fluids, gases, or debris from the surgical site during procedures. Surgical suction helps maintain a clear field of view for surgeons, enhances tissue visualization, and contributes to a sterile operating environment.

3. Anesthesia:

In anesthesia machines, vacuum pumps are used to create suction for various purposes:

– Airway Suction: Vacuum pumps assist in airway suctioning to clear secretions or obstructions from the patient’s airway during anesthesia or emergency situations.

– Evacuation of Gases: Vacuum pumps aid in removing exhaled gases from the patient’s breathing circuit, ensuring the delivery of fresh gas mixtures and maintaining appropriate anesthesia levels.

4. Laboratory Equipment:

Vacuum pumps are essential components in various medical laboratory equipment:

– Vacuum Ovens: Vacuum pumps are used in vacuum drying ovens, which are utilized for controlled drying or heat treatment of sensitive materials, samples, or laboratory glassware.

– Centrifugal Concentrators: Vacuum pumps are employed in centrifugal concentrators to facilitate the concentration or dehydration of biological samples, such as DNA, proteins, or viruses.

– Freeze Dryers: Vacuum pumps play a vital role in freeze-drying processes, where samples are frozen and then subjected to vacuum conditions to remove water via sublimation, preserving the sample’s structure and integrity.

5. Medical Suction Devices:

Vacuum pumps are utilized in standalone medical suction devices, commonly found in hospitals, clinics, and emergency settings. These devices create suction required for various medical procedures, including:

– Suctioning of Respiratory Secretions: Vacuum pumps assist in removing respiratory secretions or excess fluids from the airways of patients who have difficulty coughing or clearing their airways effectively.

– Thoracic Drainage: Vacuum pumps are used in chest drainage systems to evacuate air or fluid from the pleural cavity, helping in the treatment of conditions such as pneumothorax or pleural effusion.

– Obstetrics and Gynecology: Vacuum pumps are employed in devices used for vacuum-assisted deliveries, such as vacuum extractors, to aid in the safe delivery of babies during childbirth.

6. Blood Collection and Processing:

Vacuum pumps are utilized in blood collection systems and blood processing equipment:

– Blood Collection Tubes: Vacuum pumps are responsible for creating the vacuum inside blood collection tubes, facilitating the collection of blood samples for diagnostic testing.

– Blood Separation and Centrifugation: In blood processing equipment, vacuum pumps assist in the separation of blood components, such as red blood cells, plasma, and platelets, for various medical procedures and treatments.

7. Medical Imaging:

Vacuum pumps are used in certain medical imaging techniques:

– Electron Microscopy: Electron microscopes, including scanning electron microscopes and transmission electron microscopes, require a vacuum environment for high-resolution imaging. Vacuum pumps are employed to maintain the necessary vacuum conditions within the microscope chambers.

These are just a few examples of the wide-ranging applications of vacuum pumps in the medical field. Their ability to create suction and controlled vacuum environments makes them indispensable in medical procedures, wound healing, laboratory processes, anesthesia, and various other medical applications.

China Good quality Micro Vacuum and Air Diaphragm Pump (DC brushless motor)   vacuum pump electricChina Good quality Micro Vacuum and Air Diaphragm Pump (DC brushless motor)   vacuum pump electric
editor by CX 2024-04-16

China Hot selling for Clean Vacuum of Oil-Free Dry Air Cooled Screw Vacuum Pump vacuum pump and compressor

Product Description

Product Description

Dry screw vacuum pump, is the use of a pair of screw, made in the pump shell synchronous high-speed reverse rotation of the effects of the suction and exhaust and suction device, 2 screw fine dynamic balancing correction, and is supported by bearings, is installed in the pump shell, between screw and screw has a certain gap, so the pump work, no friction between each other, smooth running, low noise, Working chamber without lubricating oil, therefore, dry screw pump can remove a lot of steam and a small amount of dust gas occasions, higher limit vacuum, lower power consumption, energy saving, maintenance-free and other advantages.Dry Oil-Free Air Cooling Screw Vacuum Pump ,This is an advanced and widely used vacuum pump at present, It is 1 of the best-selling products of our company.
 It adopts explosion-proof motor with high configuration, It has the characteristics of low noise, no oil and pollution, clean and high vacuum, simple and convenient use, operation and maintenance, Widely used in many industries, For example, oil and gas recovery, vacuum coating, biomedicine, food processing, single crystal furnace, vacuum forming, vacuum melting, electronic photovoltaic, semiconductor synthesis and many other industries are used.
The dry oil-free screw vacuum pump produced by our company is divided into air cooling and water cooling according to the extraction rate, and there are many models for you to choose.

Our Advantages

There is no medium in the working chamber, which can obtain a clean vacuum.
. No clearance between rotating parts, high speed operation, small overall volume.

There is no compression in the gas, suitable for extraction of coagulable gas.

Can remove a lot of steam and a small amount of dust gas occasions.
. High vacuum, the ultimate vacuum up to 1 Pa.

Screw material is high strength special material, material density, wear resistance, stable performance.

No friction rotating parts, low noise.
. Simple structure, convenient maintenance.
Wider range of use: corrosive environment can be used.

No oil consumption, no water.

Pump gas directly discharged from the pump body, no pollution of water, no environmental pressure, more convenient gas recovery.

It can be composed of oil-free unit with Roots pump and molecular pump.

 

Typical Use

——Oil and gas recovery.    ——Biological medicine ——Food Processing —— Single crystal furnace
——Vacuum forming ——Vacuum flame refining ——Electronic photovoltaic. ——Semiconductor synthesis

Product Parameters

Type
(Air cooled series)
                                                                            Basic parameters 
Pumping speed
(m3/h)
Presure limit(Pa)  Power (kW)  revolution (rpm) Inlet caliber
(mm)
outlet caliber (mm) Pump head weight
(kg)
noise dB(A) Overall dimension
(length*width*height)
(mm)
LG-10 10 ≤5 0.75 2730 KF16 KF16 30 ≤ 72 655x260x285
LG-20 20 ≤5 1.1 2840 KF25 KF25 55 ≤72 720x305x370
LG-50 50 ≤10 2.2 2850 KF40 KF40 90 ≤75 920x350x420
LG-70 70 ≤30 3 2850 KF40 KF40 110 ≤75 910x390x460
LG-90 90 ≤30 4 2870 KF50 KF50 125 ≤80 1000x410x495

Characteristic Curve

 

Detailed Photos

General Manager Speech

Deeply cultivate the vacuum technology, and research,develop and manufacture the vacuum equipment to provide the best solution in the vacuum field and make the vacuum application easier.

Company Profile

ZheJiang Kaien Vacuum Technology Co., Ltd. is a high-tech enterprise integrating R & D, production and operation of vacuum equipment. The company has strong technical force, excellent equipment and considerate after-sales service. The product manufacturing process is managed in strict accordance with IS09001 quality system. It mainly produces and sells screw vacuum pump, roots pump, claw vacuum pump, runoff vacuum pump, scroll pump, water ring vacuum pump, vacuum unit and other vacuum systems.

New plant plHangZhou

The company’s products have been for a number of food, medicine, refrigeration, drying plants and a number of transformer related equipment manufacturers for vacuum equipment. The products are widely used in vacuum drying and dehydration, kerosene vapor phase drying, vacuum impregnation, vacuum metallurgy, vacuum coating, vacuum evaporation, vacuum concentration, oil and gas recovery, etc.

High precision machining equipment

The company cooperates with many scientific research institutions and universities, such as ZheJiang University, China University of petroleum, ZheJiang Institute of mechanical design, etc.with colleges and universities to research and develop core technologies, and owns dozens of independent intellectual property patents.Our technology is leading, the product quality is stable, the product has a good reputation in China’s domestic market, is sold all over the country, and is exported to Europe, America, Africa, the Middle East and Southeast Asia,We adhering to the basic tenet of quality, reputation and service, the company takes leading-edge technology of vacuum pump as its own responsibility, and wholeheartedly serves customers of vacuum equipment application in various industries with rigorous working attitude and professional working style.

Product quality wins consumer cooperation

In shipment

ISO 9001

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Lifetime Paid Service
Warranty: One Year
Oil or Not: Oil Free
Structure: Screw
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Customization:
Available

|

screw vane pump

What are the cost considerations when purchasing and maintaining screw vacuum pumps?

When purchasing and maintaining screw vacuum pumps, several cost considerations come into play. Here’s a detailed explanation of the key factors to consider:

1. Initial Purchase Cost:

The initial purchase cost of a screw vacuum pump is an important consideration. The cost can vary depending on factors such as the pump’s capacity, specifications, features, and the manufacturer. Generally, screw vacuum pumps tend to have a higher upfront cost compared to some other types of vacuum pumps. However, it’s essential to evaluate the long-term benefits and performance advantages offered by screw vacuum pumps to determine their overall value for the specific application.

2. Energy Consumption:

Energy consumption is a significant ongoing cost associated with operating screw vacuum pumps. While screw vacuum pumps are known for their high efficiency, it’s important to consider the power requirements and energy consumption of the specific pump model. Opting for energy-efficient screw vacuum pumps can result in long-term cost savings by reducing electricity bills and minimizing the environmental impact. Additionally, pumps equipped with advanced control systems or variable speed drives allow for better energy optimization and can further enhance cost-effectiveness.

3. Maintenance and Service:

Maintenance and service costs are important considerations throughout the lifecycle of a screw vacuum pump. Regular maintenance is necessary to ensure optimal performance, reliability, and longevity of the equipment. The specific maintenance requirements and associated costs can vary depending on the pump model and manufacturer. It’s crucial to follow the manufacturer’s recommended maintenance schedule and guidelines. Some maintenance tasks may include changing seals, replacing filters, inspecting and lubricating bearings, and monitoring performance parameters. Proper maintenance can prevent costly breakdowns, extend the pump’s service life, and minimize unexpected repair expenses.

4. Spare Parts and Consumables:

When budgeting for screw vacuum pumps, it’s important to consider the cost of spare parts and consumables. Over time, certain components of the pump may require replacement, such as seals, gaskets, filters, or lubricants. The availability and cost of these spare parts can vary depending on the pump model and manufacturer. It’s advisable to inquire about the availability, pricing, and expected lifespan of consumables when purchasing the pump and factor these costs into the overall budget.

5. Operational Downtime:

Operational downtime can have significant cost implications for any industrial process. When a screw vacuum pump requires maintenance, repair, or replacement, it may result in downtime, leading to production interruptions, decreased efficiency, and potential revenue loss. Therefore, it’s important to consider the reliability, serviceability, and availability of technical support when choosing a screw vacuum pump. Opting for reputable manufacturers with a track record of providing reliable products and responsive customer support can help minimize operational downtime and mitigate associated costs.

6. Lifecycle Cost Analysis:

When evaluating the cost considerations of screw vacuum pumps, it’s beneficial to conduct a lifecycle cost analysis. This analysis takes into account not only the initial purchase cost but also the long-term operational costs, maintenance expenses, energy consumption, and expected service life of the pump. By considering the total cost of ownership over the pump’s lifespan, including factors like efficiency, reliability, and maintenance requirements, it becomes easier to assess the cost-effectiveness of different pump options and make informed purchasing decisions.

7. Warranty and After-Sales Support:

Considering the warranty and after-sales support offered by the pump manufacturer is essential. A comprehensive warranty can provide cost protection against potential defects or premature failures. Additionally, reliable after-sales support, technical assistance, and readily available spare parts can contribute to minimizing downtime, reducing repair costs, and ensuring the long-term performance of the screw vacuum pump.

In summary, the cost considerations when purchasing and maintaining screw vacuum pumps include the initial purchase cost, energy consumption, maintenance and service expenses, spare parts and consumables, operational downtime, lifecycle cost analysis, and warranty and after-sales support. By carefully evaluating these factors and assessing the specific needs of the application, businesses can make informed decisions to optimize cost-effectiveness and achieve reliable vacuum pump performance.

screw vane pump

Are there noise and vibration considerations when using screw vacuum pumps?

Yes, there are noise and vibration considerations when using screw vacuum pumps. Here’s a detailed explanation of the noise and vibration factors associated with screw vacuum pumps:

1. Noise Generation:

Screw vacuum pumps can generate noise during their operation. The noise level depends on various factors, including the pump’s design, speed, motor type, and the specific application. While screw vacuum pumps are generally quieter compared to some other types of vacuum pumps, noise levels can still vary. It’s important to consider the noise emissions of the pump, especially in environments where noise control and worker comfort are important factors.

2. Vibration:

Screw vacuum pumps can also produce vibrations during their operation. Vibrations may result from mechanical forces, imbalances, misalignment, or resonance within the pump or its associated components. Excessive vibration can lead to reduced pump performance, accelerated wear of parts, and potential damage to the pump or connected equipment. It’s essential to minimize and control vibrations to ensure smooth and reliable operation.

3. Impact on Performance:

Excessive noise and vibration can negatively impact the performance of screw vacuum pumps. High noise levels can indicate inefficiencies, mechanical issues, or the need for maintenance. Vibrations can cause misalignment, decreased sealing effectiveness, and increased wear on components, affecting the pump’s overall efficiency and vacuum generation capability. Monitoring and addressing noise and vibration concerns are crucial to maintaining optimal pump performance.

4. Noise Control Measures:

To mitigate noise generated by screw vacuum pumps, several noise control measures can be implemented. These include using sound enclosures or barriers around the pump to reduce noise propagation, installing vibration isolation mounts or pads to minimize vibration transmission to surrounding structures, and employing acoustic insulation materials to absorb and dampen noise. Additionally, selecting pumps with lower noise ratings or opting for models specifically designed for reduced noise emissions can help minimize noise concerns.

5. Vibration Control and Maintenance:

To address vibration issues, it is important to ensure proper installation and alignment of the screw vacuum pump. This includes using appropriate mounting techniques and ensuring proper anchoring to reduce vibrations. Regular maintenance, such as inspections, lubrication, and replacement of worn-out components, can help prevent excessive vibrations and maintain smooth pump operation. Additionally, balancing rotating parts and addressing any misalignment or resonance issues can help minimize vibrations and extend the pump’s service life.

6. Occupational Health and Safety:

Noise and vibration considerations are essential from an occupational health and safety perspective. Prolonged exposure to high noise levels can have detrimental effects on worker health, including hearing damage and increased stress levels. Vibrations can also contribute to operator discomfort and fatigue. It is important to comply with relevant workplace noise regulations, provide appropriate personal protective equipment, and implement measures to minimize noise and vibration exposure for personnel working with or around screw vacuum pumps.

In summary, noise and vibration considerations are important when using screw vacuum pumps. By implementing noise control measures, addressing vibration issues, ensuring proper maintenance, and prioritizing occupational health and safety, the noise and vibration levels associated with screw vacuum pumps can be effectively managed. This helps maintain pump performance, prolong equipment life, and provide a safe and comfortable working environment.

screw vane pump

What are the advantages of using a screw vacuum pump in industrial processes?

Using a screw vacuum pump in industrial processes offers several advantages, making it a preferred choice for various applications. Here are some key advantages:

  • High Efficiency: Screw vacuum pumps are known for their high efficiency in handling large volumes of gas or vapor. They operate based on positive displacement, ensuring consistent performance regardless of pressure differentials. This high volumetric efficiency allows for faster evacuation and quicker process cycles, increasing overall productivity.
  • Wide Operating Range: Screw vacuum pumps are capable of maintaining stable vacuum levels across a wide range of pressures. They can achieve both low and high vacuum levels, making them versatile for different industrial processes. This wide operating range enables their use in applications that require precise control of vacuum levels.
  • Continuous Operation: Screw vacuum pumps are designed for continuous operation without the need for frequent shutdowns or maintenance. They can handle demanding industrial processes that require sustained vacuum levels for extended periods. This continuous operation improves productivity and reduces downtime.
  • Reliability and Durability: Screw vacuum pumps are known for their reliability and robust construction. They are designed to withstand harsh operating conditions, including high temperatures, corrosive environments, and heavy-duty applications. Their durable design and materials ensure long service life and minimal maintenance requirements.
  • Low Noise Levels: Screw vacuum pumps generally produce lower noise levels compared to other types of vacuum pumps. This feature is particularly beneficial in industrial settings where noise reduction is important for the comfort and safety of workers.
  • Ability to Handle Wet and Dirty Gases: Screw vacuum pumps can handle wet and dirty gases effectively without compromising performance. They are designed to handle condensable vapors, particulates, and liquid carryover, which makes them suitable for applications where the gas or vapor may contain contaminants.
  • Reduced Environmental Impact: Screw vacuum pumps often incorporate energy-efficient designs, resulting in reduced power consumption and lower operating costs. Additionally, some models may include features such as oil-free operation, which eliminates the need for lubricating oil and reduces the environmental impact.
  • Application Versatility: Screw vacuum pumps find applications in a wide range of industries, including chemical processing, pharmaceuticals, food and beverage, power generation, electronics manufacturing, and more. They are capable of handling various gases and vapors, making them adaptable to different industrial processes.

Overall, the advantages of using a screw vacuum pump in industrial processes include high efficiency, wide operating range, continuous operation, reliability, low noise levels, ability to handle wet and dirty gases, reduced environmental impact, and application versatility. These factors contribute to improved productivity, cost savings, and enhanced process control, making screw vacuum pumps a popular choice in many industrial settings.

China Hot selling for Clean Vacuum of Oil-Free Dry Air Cooled Screw Vacuum Pump   vacuum pump and compressor	China Hot selling for Clean Vacuum of Oil-Free Dry Air Cooled Screw Vacuum Pump   vacuum pump and compressor
editor by CX 2024-04-15

China supplier Ce Certificate 10HP Compressed Air Vacuum Pump vacuum pump diy

Product Description

Ce Certificate 10HP Compressed Air Vacuum Pump

 

Model Stage/Phase Frequency Power Voltage Current Airflow Vacuum Pressure Noise weight
Hz KW V A m3/h mbar mbar db KG
2JM 810 H27 Single/Three 50 7.5 345-415△/6
   

     

  
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Aluminum
Usage: Aeration
Flow Direction: Centrifugal
Pressure: High Pressure
Certification: CE, CCC
Power: 7.5kw
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Furnaces?

Yes, vacuum pumps can be used for vacuum furnaces. Here’s a detailed explanation:

Vacuum furnaces are specialized heating systems used in various industries for heat treatment processes that require controlled environments with low or no atmospheric pressure. Vacuum pumps play a crucial role in creating and maintaining the vacuum conditions necessary for the operation of vacuum furnaces.

Here are some key points regarding the use of vacuum pumps in vacuum furnaces:

1. Vacuum Creation: Vacuum pumps are used to evacuate the furnace chamber, creating a low-pressure or near-vacuum environment. This is essential for the heat treatment processes carried out in the furnace, as it helps eliminate oxygen and other reactive gases, preventing oxidation or unwanted chemical reactions with the heated materials.

2. Pressure Control: Vacuum pumps provide the means to control and maintain the desired pressure levels within the furnace chamber during the heat treatment process. Precise pressure control is necessary to achieve the desired metallurgical and material property changes during processes such as annealing, brazing, sintering, and hardening.

3. Contamination Prevention: By removing gases and impurities from the furnace chamber, vacuum pumps help prevent contamination of the heated materials. This is particularly important in applications where cleanliness and purity of the processed materials are critical, such as in the aerospace, automotive, and medical industries.

4. Rapid Cooling: Some vacuum furnace systems incorporate rapid cooling capabilities, known as quenching. Vacuum pumps assist in facilitating the rapid cooling process by removing the heat generated during quenching, ensuring efficient cooling and minimizing distortion or other unwanted effects on the treated materials.

5. Process Flexibility: Vacuum pumps provide flexibility in the type of heat treatment processes that can be performed in vacuum furnaces. Different heat treatment techniques, such as vacuum annealing, vacuum brazing, or vacuum carburizing, require specific pressure levels and atmospheric conditions that can be achieved and maintained with the use of vacuum pumps.

6. Vacuum Pump Types: Different types of vacuum pumps can be used in vacuum furnaces, depending on the specific requirements of the heat treatment process. Commonly used vacuum pump technologies include oil-sealed rotary vane pumps, dry screw pumps, diffusion pumps, and cryogenic pumps. The choice of vacuum pump depends on factors such as required vacuum level, pumping speed, reliability, and compatibility with the process gases.

7. Maintenance and Monitoring: Proper maintenance and monitoring of vacuum pumps are essential to ensure their optimal performance and reliability. Regular inspections, lubrication, and replacement of consumables (such as oil or filters) are necessary to maintain the efficiency and longevity of the vacuum pump system.

8. Safety Considerations: Operating vacuum furnaces with vacuum pumps requires adherence to safety protocols. This includes proper handling of potentially hazardous gases or chemicals used in the heat treatment processes, as well as following safety guidelines for operating and maintaining the vacuum pump system.

Overall, vacuum pumps are integral components of vacuum furnaces, enabling the creation and maintenance of the required vacuum conditions for precise and controlled heat treatment processes. They contribute to the quality, consistency, and efficiency of the heat treatment operations performed in vacuum furnaces across a wide range of industries.

vacuum pump

What Is the Role of Vacuum Pumps in Pharmaceutical Manufacturing?

Vacuum pumps play a crucial role in various aspects of pharmaceutical manufacturing. Here’s a detailed explanation:

Vacuum pumps are extensively used in pharmaceutical manufacturing processes to support a range of critical operations. Some of the key roles of vacuum pumps in pharmaceutical manufacturing include:

1. Drying and Evaporation: Vacuum pumps are employed in drying and evaporation processes within the pharmaceutical industry. They facilitate the removal of moisture or solvents from pharmaceutical products or intermediates. Vacuum drying chambers or evaporators utilize vacuum pumps to create low-pressure conditions, which lower the boiling points of liquids, allowing them to evaporate at lower temperatures. By applying vacuum, moisture or solvents can be efficiently removed from substances such as active pharmaceutical ingredients (APIs), granules, powders, or coatings, ensuring the desired product quality and stability.

2. Filtration and Filtrate Recovery: Vacuum pumps are used in filtration processes for the separation of solid-liquid mixtures. Vacuum filtration systems typically employ a filter medium, such as filter paper or membranes, to retain solids while allowing the liquid portion to pass through. By applying vacuum to the filtration apparatus, the liquid is drawn through the filter medium, leaving behind the solids. Vacuum pumps facilitate efficient filtration, speeding up the process and improving product quality. Additionally, vacuum pumps can aid in filtrate recovery by collecting and transferring the filtrate for further processing or reuse.

3. Distillation and Purification: Vacuum pumps are essential in distillation and purification processes within the pharmaceutical industry. Distillation involves the separation of liquid mixtures based on their different boiling points. By creating a vacuum environment, vacuum pumps lower the boiling points of the components, allowing them to vaporize and separate more easily. This enables efficient separation and purification of pharmaceutical compounds, including the removal of impurities or the isolation of specific components. Vacuum pumps are utilized in various distillation setups, such as rotary evaporators or thin film evaporators, to achieve precise control over the distillation conditions.

4. Freeze Drying (Lyophilization): Vacuum pumps are integral to the freeze drying process, also known as lyophilization. Lyophilization is a dehydration technique that involves the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. Vacuum pumps create a low-pressure environment in freeze drying chambers, allowing the frozen product to undergo sublimation. During sublimation, the frozen water or solvent directly transitions from the solid phase to the vapor phase, bypassing the liquid phase. Vacuum pumps facilitate efficient and controlled sublimation, leading to the production of stable, shelf-stable pharmaceutical products with extended shelf life.

5. Tablet and Capsule Manufacturing: Vacuum pumps are utilized in tablet and capsule manufacturing processes. They are involved in the creation of vacuum within tablet presses or capsule filling machines. By applying vacuum, the air is removed from the die cavity or capsule cavity, allowing for the precise filling of powders or granules. Vacuum pumps contribute to the production of uniform and well-formed tablets or capsules by ensuring accurate dosing and minimizing air entrapment, which can affect the final product quality.

6. Sterilization and Decontamination: Vacuum pumps are employed in sterilization and decontamination processes within the pharmaceutical industry. Autoclaves and sterilizers utilize vacuum pumps to create a vacuum environment before introducing steam or chemical sterilants. By removing air or gases from the chamber, vacuum pumps assist in achieving effective sterilization or decontamination by enhancing the penetration and distribution of sterilants. Vacuum pumps also aid in the removal of sterilants and residues after the sterilization process is complete.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, dry screw pumps, or liquid ring pumps, may be utilized in pharmaceutical manufacturing depending on the specific requirements of the process and the compatibility with pharmaceutical products.

In summary, vacuum pumps play a vital role in various stages of pharmaceutical manufacturing, including drying and evaporation, filtration and filtrate recovery, distillation and purification, freeze drying (lyophilization), tablet and capsule manufacturing, as well as sterilization and decontamination. By enabling efficient and controlled processes, vacuum pumps contribute to the production of high-quality pharmaceutical products, ensuring the desired characteristics, stability, and safety.

vacuum pump

Can Vacuum Pumps Be Used in the Medical Field?

Yes, vacuum pumps have a wide range of applications in the medical field. Here’s a detailed explanation:

Vacuum pumps play a crucial role in various medical applications, providing suction or creating controlled vacuum environments. Here are some key areas where vacuum pumps are used in the medical field:

1. Negative Pressure Wound Therapy (NPWT):

Vacuum pumps are extensively utilized in negative pressure wound therapy, a technique used to promote wound healing. In NPWT, a vacuum pump creates a controlled low-pressure environment within a wound dressing, facilitating the removal of excess fluid, promoting blood flow, and accelerating the healing process.

2. Surgical Suction:

Vacuum pumps are an integral part of surgical suction systems. They provide the necessary suction force to remove fluids, gases, or debris from the surgical site during procedures. Surgical suction helps maintain a clear field of view for surgeons, enhances tissue visualization, and contributes to a sterile operating environment.

3. Anesthesia:

In anesthesia machines, vacuum pumps are used to create suction for various purposes:

– Airway Suction: Vacuum pumps assist in airway suctioning to clear secretions or obstructions from the patient’s airway during anesthesia or emergency situations.

– Evacuation of Gases: Vacuum pumps aid in removing exhaled gases from the patient’s breathing circuit, ensuring the delivery of fresh gas mixtures and maintaining appropriate anesthesia levels.

4. Laboratory Equipment:

Vacuum pumps are essential components in various medical laboratory equipment:

– Vacuum Ovens: Vacuum pumps are used in vacuum drying ovens, which are utilized for controlled drying or heat treatment of sensitive materials, samples, or laboratory glassware.

– Centrifugal Concentrators: Vacuum pumps are employed in centrifugal concentrators to facilitate the concentration or dehydration of biological samples, such as DNA, proteins, or viruses.

– Freeze Dryers: Vacuum pumps play a vital role in freeze-drying processes, where samples are frozen and then subjected to vacuum conditions to remove water via sublimation, preserving the sample’s structure and integrity.

5. Medical Suction Devices:

Vacuum pumps are utilized in standalone medical suction devices, commonly found in hospitals, clinics, and emergency settings. These devices create suction required for various medical procedures, including:

– Suctioning of Respiratory Secretions: Vacuum pumps assist in removing respiratory secretions or excess fluids from the airways of patients who have difficulty coughing or clearing their airways effectively.

– Thoracic Drainage: Vacuum pumps are used in chest drainage systems to evacuate air or fluid from the pleural cavity, helping in the treatment of conditions such as pneumothorax or pleural effusion.

– Obstetrics and Gynecology: Vacuum pumps are employed in devices used for vacuum-assisted deliveries, such as vacuum extractors, to aid in the safe delivery of babies during childbirth.

6. Blood Collection and Processing:

Vacuum pumps are utilized in blood collection systems and blood processing equipment:

– Blood Collection Tubes: Vacuum pumps are responsible for creating the vacuum inside blood collection tubes, facilitating the collection of blood samples for diagnostic testing.

– Blood Separation and Centrifugation: In blood processing equipment, vacuum pumps assist in the separation of blood components, such as red blood cells, plasma, and platelets, for various medical procedures and treatments.

7. Medical Imaging:

Vacuum pumps are used in certain medical imaging techniques:

– Electron Microscopy: Electron microscopes, including scanning electron microscopes and transmission electron microscopes, require a vacuum environment for high-resolution imaging. Vacuum pumps are employed to maintain the necessary vacuum conditions within the microscope chambers.

These are just a few examples of the wide-ranging applications of vacuum pumps in the medical field. Their ability to create suction and controlled vacuum environments makes them indispensable in medical procedures, wound healing, laboratory processes, anesthesia, and various other medical applications.

China supplier Ce Certificate 10HP Compressed Air Vacuum Pump   vacuum pump diyChina supplier Ce Certificate 10HP Compressed Air Vacuum Pump   vacuum pump diy
editor by CX 2024-04-13

China best 850W Air Compression Pumpoil Free Piston Vacuum Pump Small Air Compressor Cn Zhe Made in China Silent Oil Pump for Packaging Machinery with Best Sales

Product Description

  

Model

BST850AFZ/BSZ

Voltage/frequency  (V/Hz)

220-240V/50Hz 100v-120v/60Hz

Input power(W)

≤550

Speed (r/min)

≥1350  1650

Primary vacuumKPa

-93KPa

Secondary vacuumKPa

-98KPa

Restart pressure (KPa)

0KPa

Rated volume flow  (m3/h)

≥12m3/h @0KPa; 

Noise dB(A)

≤62dB(A)

Ambient temperature  ºC

-5-40 ºC

Insulation Class

F

Cold insulation resistance  (MΩ)

≥100MΩ

Voltage resistance

1500V/50Hz 1min(No breakdown)

Thermal protector

Automatic reset 135±5ºC

Capacitance (μF)

25μF±5%  75μF±5% 

Net weight (Kg)

10.5Kg

Installation Dimensions (mm)

223.2×88.9 mm(4XM6)

External Dimensions (mm)

268.8*128*214.7mm

Typical application
Respirator (ventilator) oxygenerator
Disinfectant sprayer Blood analyzer
Clinical aspirator Dialysis / hemodialysis
Dental vacuum drying oven Air suspension system
Vending machines / coffee blenders and coffee machines Massage chair
Chromatographic analyzer Teaching instrument platform
On board access control system Airborne oxygen generator


      Why choose CHINAMFG air compressor
1. It saves 10-30% energy than the air compressor produced by ordinary manufacturers.
2. It is widely used in medical oxygen generator and ventilator .
3.  A large number of high-speed train and automobile application cases, supporting – 41 to 70 ºC, 0-6000 CHINAMFG above sea level .
4. Medium and high-end quality, with more than 7000 hours of trouble free operation for conventional products and more than 15000 hours of trouble free operation for high-end  products.
5. Simple operation, convenient maintenance and remote guidance.
6. Faster delivery time, generally completed within 25 days within 1000 PCs.

 

Machine Parts

Name: Motor 
Brand: COMBESTAIR 
Original: China
1.The coil adopts the fine pure copper enameled wire, and the rotor adopts the famous brand silicon steel sheet such as ZheJiang baosteel.
2.The customer can choose the insulation grade B or F motor according to What he wants.
3.The motor has a built-in thermal protector, which can select external heat sensor.
4.Voltage from AC100V ~120V, 200V ~240V, 50Hz / 60Hz, DC6V~200V optional ; AC motor can choose double voltage double frequency ; DC Motor can choose the control of the infinitely variable speed.

Machine Parts

Name: Bearing
Brand: ERB , CHINAMFG , NSK 
Original: China ect.
1.Standard products choose the special bearing ‘ERB’ in oil-free compressor, and the environment temperature tolerance from -50ºC to 180 ºC . Ensure no fault operation for 20,000 hours.
2.Customers can select TPI, NSK and other imported bearings according to the working condition.

Machine Parts

Name: Valve plates
Brand: SANDVIK
Original: Sweden
1.Custom the valve steel of Sweden SANDVIK; Good flexibility and long durability.
2.Thickness from 0.08mm to 1.2mm, suitable for maximum pressure from 0.8 MPa to 1.2 MPa.

Machine Parts

Name: Piston ring
Brand: COMBESTAIR-OEM , Saint-Gobain
Original: China , France
1.Using domestic famous brand–Polytetrafluoroethylene composite material; Wear-resistant high temperature; Ensure more than 10,000 hours of service life.
2.High-end products: you can choose the ST.gobain’s piston ring from the American import.

serial
number
Code number Name and specification Quantity Material Note
1 212571109 Fan cover 2 Reinforced nylon 1571  
2 212571106 Left fan 1 Reinforced nylon 1571  
3 212571101 Left box 1 Die-cast aluminum alloy YL104  
4 212571301 Connecting rod 2 Die-cast aluminum alloy YL104  
5 212571304 Piston cup 2 PHB filled PTFE  
6 212571302 Clamp 2 Die-cast aluminum alloy YL102  
7 7050616 Screw of cross head 2 Carbon structural steel of cold heading M6•16
8 212571501 Air cylinder 2 Thin wall pipe of aluninun alloy 6A02T4  
9 17103 Seal ring of Cylinder 2 Silicone rubber  
10 212571417 Sealing ring of cylinder cover 2 Silicone rubber  
11 212571401 Cylinder head 2 Die-cast aluminum alloy YL102  
12 7571525 Screw of inner hexagon Cylinder head 12   M5•25
13 17113 Sealing ring of connecting pipe 4 Silicong rubber  
14 212571801 Connecting pipe 2 Aluminum and aluminum alloy connecting rod LY12  
15 7100406 Screw of Cross head 4 1Cr13N19 M4•6
16 212571409 Limit block 2 Die-cast aluminum alloy YL102  
17 000402.2 Air outlet valve 2 7Cr27 quenching steel belt of The Swedish sandvik  
18 212571403 valve 2 Die-cast aluminum alloy YL102  
19 212571404 Air inlet valve 2 7Cr27 quenching steel belt of The Swedish sandvik  
20 212571406 Metal gasket 2 Stainless steel plate of heat and acidresistance  
21 212571107 Right fan 1 Reinforced nylon 1571  
22 212571201 Crank 2 Gray castiron  H20-40  
23 14040 Bearing 6006-2Z 2    
24 70305 Tighten screw of inner hexagon flat end 2   M8•8
25 7571520 Screw of inner hexagon Cylinder head 2   M5•20
26 212571102 Right box 1 Die-cast aluminum alloy YL104  
27 6P-4 Lead protective ring 1    
28 7095712-211 Hexagon head bolt 2 Carbon structural steel of cold heading M5•152
29 715710-211 Screw of Cross head 2 Carbon structural steel of cold heading M5•120
30 16602 Light spring washer 4   ø5
31 212571600 Stator 1    
32 70305 Lock nut of hexagon flange faces 2    
33 212571700 Rotor 1    
34 14032 Bearing 6203-2Z 2    

 


FAQ

Q1: Are you factory or trade company?  
A1: We are factory.

Q2: What the exactly address of your factory? 
A2: Our factory is located in Linbei industrial area No.30 HangZhou City of ZHangZhoug Province, China

Q3: Warranty terms of your machine? 
A3: Two years warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines? 
A4: Yes, of course.

Q5: How long will you take to arrange production? 
A5: Generally, 1000 pcs can be delivered within 25 days

Q6: Can you accept OEM orders? 
A6: Yes, with professional design team, OEM orders are highly welcome

Q7:Can you accept non-standard customization?

A7:We have the ability to develop new products and can customize, develop and research according to your requirements

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Remote Guided Maintenance
Warranty: 2 Years
Principle: Mixed-Flow Compressor
Samples:
US$ 65/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

vacuum pump

What Is the Vacuum Level and How Is It Measured in Vacuum Pumps?

The vacuum level refers to the degree of pressure below atmospheric pressure in a vacuum system. It indicates the level of “emptiness” or the absence of gas molecules in the system. Here’s a detailed explanation of vacuum level measurement in vacuum pumps:

Vacuum level is typically measured using pressure units that represent the difference between the pressure in the vacuum system and atmospheric pressure. The most common unit of measurement for vacuum level is the Pascal (Pa), which is the SI unit. Other commonly used units include Torr, millibar (mbar), and inches of mercury (inHg).

Vacuum pumps are equipped with pressure sensors or gauges that measure the pressure within the vacuum system. These gauges are specifically designed to measure the low pressures encountered in vacuum applications. There are several types of pressure gauges used for measuring vacuum levels:

1. Pirani Gauge: Pirani gauges operate based on the thermal conductivity of gases. They consist of a heated element exposed to the vacuum environment. As gas molecules collide with the heated element, they transfer heat away, causing a change in temperature. By measuring the change in temperature, the pressure can be inferred, allowing the determination of the vacuum level.

2. Thermocouple Gauge: Thermocouple gauges utilize the thermal conductivity of gases similar to Pirani gauges. They consist of two dissimilar metal wires joined together, forming a thermocouple. As gas molecules collide with the thermocouple, they cause a temperature difference between the wires, generating a voltage. The voltage is proportional to the pressure and can be calibrated to provide a reading of the vacuum level.

3. Capacitance Manometer: Capacitance manometers measure pressure by detecting the change in capacitance between two electrodes caused by the deflection of a flexible diaphragm. As the pressure in the vacuum system changes, the diaphragm moves, altering the capacitance and providing a measurement of the vacuum level.

4. Ionization Gauge: Ionization gauges operate by ionizing gas molecules in the vacuum system and measuring the resulting electrical current. The ion current is proportional to the pressure, allowing the determination of the vacuum level. There are different types of ionization gauges, such as hot cathode, cold cathode, and Bayard-Alpert gauges.

5. Baratron Gauge: Baratron gauges utilize the principle of capacitance manometry but with a different design. They consist of a pressure-sensing diaphragm separated by a small gap from a reference electrode. The pressure difference between the vacuum system and the reference electrode causes the diaphragm to deflect, changing the capacitance and providing a measurement of the vacuum level.

It’s important to note that different types of vacuum pumps may have different pressure ranges and may require specific pressure gauges suitable for their operating conditions. Additionally, vacuum pumps are often equipped with multiple gauges to provide information about the pressure at different stages of the pumping process or in different parts of the system.

In summary, vacuum level refers to the pressure below atmospheric pressure in a vacuum system. It is measured using pressure gauges specifically designed for low-pressure environments. Common types of pressure gauges used in vacuum pumps include Pirani gauges, thermocouple gauges, capacitance manometers, ionization gauges, and Baratron gauges.

\vacuum pump

Can Vacuum Pumps Be Used for Soil and Groundwater Remediation?

Vacuum pumps are indeed widely used for soil and groundwater remediation. Here’s a detailed explanation:

Soil and groundwater remediation refers to the process of removing contaminants from the soil and groundwater to restore environmental quality and protect human health. Vacuum pumps play a crucial role in various remediation techniques by facilitating the extraction and treatment of contaminated media. Some of the common applications of vacuum pumps in soil and groundwater remediation include:

1. Soil Vapor Extraction (SVE): Soil vapor extraction is a widely used remediation technique for volatile contaminants present in the subsurface. It involves the extraction of vapors from the soil by applying a vacuum to the subsurface through wells or trenches. Vacuum pumps create a pressure gradient that induces the movement of vapors towards the extraction points. The extracted vapors are then treated to remove or destroy the contaminants. Vacuum pumps play a vital role in SVE by maintaining the necessary negative pressure to enhance the volatilization and extraction of contaminants from the soil.

2. Dual-Phase Extraction (DPE): Dual-phase extraction is a remediation method used for the simultaneous extraction of both liquids (such as groundwater) and vapors (such as volatile organic compounds) from the subsurface. Vacuum pumps are utilized to create a vacuum in extraction wells or points, drawing out both the liquid and vapor phases. The extracted groundwater and vapors are then separated and treated accordingly. Vacuum pumps are essential in DPE systems for efficient and controlled extraction of both liquid and vapor-phase contaminants.

3. Groundwater Pumping and Treatment: Vacuum pumps are also employed in groundwater remediation through the process of pumping and treatment. They are used to extract contaminated groundwater from wells or recovery trenches. By creating a vacuum or negative pressure, vacuum pumps facilitate the flow of groundwater towards the extraction points. The extracted groundwater is then treated to remove or neutralize the contaminants before being discharged or re-injected into the ground. Vacuum pumps play a critical role in maintaining the required flow rates and hydraulic gradients for effective groundwater extraction and treatment.

4. Air Sparging: Air sparging is a remediation technique used to treat groundwater and soil contaminated with volatile organic compounds (VOCs). It involves the injection of air or oxygen into the subsurface to enhance the volatilization of contaminants. Vacuum pumps are utilized in air sparging systems to create a vacuum or negative pressure zone in wells or points surrounding the contaminated area. This induces the movement of air and oxygen through the soil, facilitating the release and volatilization of VOCs. Vacuum pumps are essential in air sparging by maintaining the necessary negative pressure gradient for effective contaminant removal.

5. Vacuum-Enhanced Recovery: Vacuum-enhanced recovery, also known as vacuum-enhanced extraction, is a remediation technique used to recover non-aqueous phase liquids (NAPLs) or dense non-aqueous phase liquids (DNAPLs) from the subsurface. Vacuum pumps are employed to create a vacuum or negative pressure gradient in recovery wells or trenches. This encourages the movement and extraction of NAPLs or DNAPLs towards the recovery points. Vacuum pumps facilitate the efficient recovery of these dense contaminants, which may not be easily recoverable using traditional pumping methods.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, liquid ring pumps, or air-cooled pumps, may be used in soil and groundwater remediation depending on the specific requirements of the remediation technique and the nature of the contaminants.

In summary, vacuum pumps play a vital role in various soil and groundwater remediation techniques, including soil vapor extraction, dual-phase extraction, groundwater pumping and treatment, air sparging, and vacuum-enhanced recovery. By creating and maintaining the necessary pressure differentials, vacuum pumps enable the efficient extraction, treatment, and removal of contaminants, contributing to the restoration of soil and groundwater quality.

vacuum pump

What Is a Vacuum Pump, and How Does It Work?

A vacuum pump is a mechanical device used to create and maintain a vacuum or low-pressure environment within a closed system. Here’s a detailed explanation:

A vacuum pump operates on the principle of removing gas molecules from a sealed chamber, reducing the pressure inside the chamber to create a vacuum. The pump accomplishes this through various mechanisms and techniques, depending on the specific type of vacuum pump. Here are the basic steps involved in the operation of a vacuum pump:

1. Sealed Chamber:

The vacuum pump is connected to a sealed chamber or system from which air or gas molecules need to be evacuated. The chamber can be a container, a pipeline, or any other enclosed space.

2. Inlet and Outlet:

The vacuum pump has an inlet and an outlet. The inlet is connected to the sealed chamber, while the outlet may be vented to the atmosphere or connected to a collection system to capture or release the evacuated gas.

3. Mechanical Action:

The vacuum pump creates a mechanical action that removes gas molecules from the chamber. Different types of vacuum pumps use various mechanisms for this purpose:

– Positive Displacement Pumps: These pumps physically trap gas molecules and remove them from the chamber. Examples include rotary vane pumps, piston pumps, and diaphragm pumps.

– Momentum Transfer Pumps: These pumps use high-speed jets or rotating blades to transfer momentum to gas molecules, pushing them out of the chamber. Examples include turbomolecular pumps and diffusion pumps.

– Entrapment Pumps: These pumps capture gas molecules by adsorbing or condensing them on surfaces or in materials within the pump. Cryogenic pumps and ion pumps are examples of entrainment pumps.

4. Gas Evacuation:

As the vacuum pump operates, it creates a pressure differential between the chamber and the pump. This pressure differential causes gas molecules to move from the chamber to the pump’s inlet.

5. Exhaust or Collection:

Once the gas molecules are removed from the chamber, they are either exhausted into the atmosphere or collected and processed further, depending on the specific application.

6. Pressure Control:

Vacuum pumps often incorporate pressure control mechanisms to maintain the desired level of vacuum within the chamber. These mechanisms can include valves, regulators, or feedback systems that adjust the pump’s operation to achieve the desired pressure range.

7. Monitoring and Safety:

Vacuum pump systems may include sensors, gauges, or indicators to monitor the pressure levels, temperature, or other parameters. Safety features such as pressure relief valves or interlocks may also be included to protect the system and operators from overpressure or other hazardous conditions.

It’s important to note that different types of vacuum pumps have varying levels of vacuum they can achieve and are suitable for different pressure ranges and applications. The choice of vacuum pump depends on factors such as the required vacuum level, gas composition, pumping speed, and the specific application’s requirements.

In summary, a vacuum pump is a device that removes gas molecules from a sealed chamber, creating a vacuum or low-pressure environment. The pump accomplishes this through mechanical actions, such as positive displacement, momentum transfer, or entrapment. By creating a pressure differential, the pump evacuates gas from the chamber, and the gas is either exhausted or collected. Vacuum pumps play a crucial role in various industries, including manufacturing, research, and scientific applications.

China best 850W Air Compression Pumpoil Free Piston Vacuum Pump Small Air Compressor Cn Zhe Made in China Silent Oil Pump for Packaging Machinery   with Best Sales China best 850W Air Compression Pumpoil Free Piston Vacuum Pump Small Air Compressor Cn Zhe Made in China Silent Oil Pump for Packaging Machinery   with Best Sales
editor by CX 2024-04-12

China Custom Air Vacuum Compression Low Noise Micro DC 6V Vacuum Pump Supplier vacuum pump oil near me

Product Description

High-Performance China Micro Vacuum Pump
Micro Air Pump/Brush DC Diaphragm Pressure Vacuum Pump/Mini Compressor Air Pump
Manufacturing  Factory

 

Product Description

To get more Technical data, Please Send a message!

 

pump

(1.5V~29V)

Miniature pump/Air pump/Vacuum pump/Water Pump/Atomization Pump/Foam pump/Nasal aspirator pump/Check valve Pump/Piston pump/Gear pump/Water Vapor pump/purpose air pump/Extraction pump/Dual pump/Vacuum air pump/Peristaltic pump/Miniature air pump

valve

(3V~12V)

Air Valve/Normal shutdown/Solenoid valve/Normal shutdown/Two-way valve/Water valve/Three-way valve

motor

(3V~24V)

Speed ratio DC brushless planetary motor/DC brushless motor of vacuum cleaner/DC brushless motor/Brushless DC motor for UAV

Feel free to send us your parameter and we will quote you for free!

We give you professional product solutions based on the product information you provide, including customization.

No big quantity is needed for your order. Small orders are welcomed.

We can also add your logo or design to your product with a laser marking machine.

Customized series

Tell us the product you want, we will provide you with professional customization of the product.

Support oem/odm, support proofing, support packaging, support voltage, support size, support design, etc.

Product Usage

Pump: electronic sphygmomanometer, household appliances, Sprayers, coffee machines, soap dispensers, beauty and medical products, Floor Scrubbers, nebulizer, Breast pump, oral irrigator, massage, eye massage apparatus, vacuum fresh container, electric aircraft cup, DC oxygen pump, Airwave physiotherapy machine, aroma diffuser, Beer brewing machine, Scrapping instrument, nasal aspirator, Intelligent wall breaker, drinking fountain, Car massage seat, Foot Massager and DC atomizing pump ect.

Solenoid valve: Smart fresh Fruit cup, Red wine preservation device, electronic sphygmomanometer, massage, household appliances, Sprayers, coffee machines, soap dispensers beauty and medical products etc.

DC brushless motor: massage, household massage gun, household appliances, electrical tools, water pump etc.

Company Profile

 

 

HangZhou CHINAMFG Motor Co., Ltd., founded in 2pcs, number of employees 600+, we have patent certificates for various products in addition to CE certificates, we provide product parameter customization
Our main products include micro air pumps, water pumps, air valves, electromagnets, micro DC motors, and other micro motors.
Our products are widely applied in medical devices, electronic sphygmomanometers, massage armchairs, smart instruments, automation devices, coffee machines, smart cleaners, breast pumps, and blood monitors. etc
We have a group of highly experienced engineers who specialized in the development of micro air pumps, micro air valves, and micro motors for over 21 years.

FAQ

 

1. What can you buy from us?
Air Pump / Solenoid Pump / Water Pump, Solenoid Valve / Water Valve, Valves, Micro DC Motors / other micromotors

 

2. What can we do for you?
We can develop new products for you or modify parameters such as flow, current, and pressure on existing products. We can OEM, and ODM.

Batch orders will be shipped in 30 working daysSample order will be shipped within 3 working days.

3.How long is the deliver[Producing] and shipping ?

Always a pre-production sample before mass production;Always final Inspection before shipment.

4. How can we guarantee quality?

The warranty is 3 year. We deliver new and faultless products. Also, we are responsible for repairing and replacing the defective ones in the warranty period meanwhile we provide life-long free technical support and maintenance.

5.What’s your warranty ?

One-stop service: one-stop service from production to shipment. Quality: A professional engineering team strictly controls product quality. Productivity: Fully automatic equipment can firmly support your bulk orders. Build your ideas: Any custom designs you have are welcome.

6.What services can we provide?

HangZhou CHINAMFG Motor Co., Ltd. is a professional Micro Pumps and solenoid valves manufacturer. Passed ISO 9001, (EU)2015/863, EC1907/2006 quality system. With a talented design team releasing original designs.

7. Why should you buy from us not from other suppliers? HangZhou CHINAMFG Motor Co., Ltd. is a professional Micro Pumps and solenoid valves manufacturer. Passed ISO 9001, (EU)2015/863, EC1907/2006 quality system. With a talented design team releasing original designs.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Timely
Warranty: 1 Year
Oil or Not: Oil Free
Structure: Reciprocating Vacuum Pump
Exhauster Method: Reciprocating Diaphragm Motion
Vacuum Degree: Vacuum
Samples:
US$ 4/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used in the Aerospace Sector?

Vacuum pumps indeed have various applications in the aerospace sector. Here’s a detailed explanation:

Vacuum pumps play a crucial role in several areas of the aerospace industry, supporting various processes and systems. Some of the key applications of vacuum pumps in the aerospace sector include:

1. Space Simulation Chambers: Vacuum pumps are used in space simulation chambers to replicate the low-pressure conditions experienced in outer space. These chambers are utilized for testing and validating the performance and functionality of aerospace components and systems under simulated space conditions. Vacuum pumps create and maintain the necessary vacuum environment within these chambers, allowing engineers and scientists to evaluate the behavior and response of aerospace equipment in space-like conditions.

2. Propellant Management: In space propulsion systems, vacuum pumps are employed for propellant management. They help in the transfer, circulation, and pressurization of propellants, such as liquid rocket fuels or cryogenic fluids, in both launch vehicles and spacecraft. Vacuum pumps assist in creating the required pressure differentials for propellant flow and control, ensuring efficient and reliable operation of propulsion systems.

3. Environmental Control Systems: Vacuum pumps are utilized in the environmental control systems of aircraft and spacecraft. These systems are responsible for maintaining the desired atmospheric conditions, including temperature, humidity, and cabin pressure, to ensure the comfort, safety, and well-being of crew members and passengers. Vacuum pumps are used to regulate and control the cabin pressure, facilitating the circulation of fresh air and maintaining the desired air quality within the aircraft or spacecraft.

4. Satellite Technology: Vacuum pumps find numerous applications in satellite technology. They are used in the fabrication and testing of satellite components, such as sensors, detectors, and electronic devices. Vacuum pumps help create the necessary vacuum conditions for thin film deposition, surface treatment, and testing processes, ensuring the performance and reliability of satellite equipment. Additionally, vacuum pumps are employed in satellite propulsion systems to manage propellants and provide thrust for orbital maneuvers.

5. Avionics and Instrumentation: Vacuum pumps are involved in the production and testing of avionics and instrumentation systems used in aerospace applications. They facilitate processes such as thin film deposition, vacuum encapsulation, and vacuum drying, ensuring the integrity and functionality of electronic components and circuitry. Vacuum pumps are also utilized in vacuum leak testing, where they help create a vacuum environment to detect and locate any leaks in aerospace systems and components.

6. High Altitude Testing: Vacuum pumps are used in high altitude testing facilities to simulate the low-pressure conditions encountered at high altitudes. These testing facilities are employed for evaluating the performance and functionality of aerospace equipment, such as engines, materials, and structures, under simulated high altitude conditions. Vacuum pumps create and control the required low-pressure environment, allowing engineers and researchers to assess the behavior and response of aerospace systems in high altitude scenarios.

7. Rocket Engine Testing: Vacuum pumps are crucial in rocket engine testing facilities. They are utilized to evacuate and maintain the vacuum conditions in engine test chambers or nozzles during rocket engine testing. By creating a vacuum environment, these pumps simulate the conditions experienced by rocket engines in the vacuum of space, enabling accurate testing and evaluation of engine performance, thrust levels, and efficiency.

It’s important to note that aerospace applications often require specialized vacuum pumps capable of meeting stringent requirements, such as high reliability, low outgassing, compatibility with propellants or cryogenic fluids, and resistance to extreme temperatures and pressures.

In summary, vacuum pumps are extensively used in the aerospace sector for a wide range of applications, including space simulation chambers, propellant management, environmental control systems, satellite technology, avionics and instrumentation, high altitude testing, and rocket engine testing. They contribute to the development, testing, and operation of aerospace equipment, ensuring optimal performance, reliability, and safety.

vacuum pump

How Do Vacuum Pumps Affect the Performance of Vacuum Chambers?

When it comes to the performance of vacuum chambers, vacuum pumps play a critical role. Here’s a detailed explanation:

Vacuum chambers are enclosed spaces designed to create and maintain a low-pressure environment. They are used in various industries and scientific applications, such as manufacturing, research, and material processing. Vacuum pumps are used to evacuate air and other gases from the chamber, creating a vacuum or low-pressure condition. The performance of vacuum chambers is directly influenced by the characteristics and operation of the vacuum pumps used.

Here are some key ways in which vacuum pumps affect the performance of vacuum chambers:

1. Achieving and Maintaining Vacuum Levels: The primary function of vacuum pumps is to create and maintain the desired vacuum level within the chamber. Vacuum pumps remove air and other gases, reducing the pressure inside the chamber. The efficiency and capacity of the vacuum pump determine how quickly the desired vacuum level is achieved and how well it is maintained. High-performance vacuum pumps can rapidly evacuate the chamber and maintain the desired vacuum level even when there are gas leaks or continuous gas production within the chamber.

2. Pumping Speed: The pumping speed of a vacuum pump refers to the volume of gas it can remove from the chamber per unit of time. The pumping speed affects the rate at which the chamber can be evacuated and the time required to achieve the desired vacuum level. A higher pumping speed allows for faster evacuation and shorter cycle times, improving the overall efficiency of the vacuum chamber.

3. Ultimate Vacuum Level: The ultimate vacuum level is the lowest pressure that can be achieved in the chamber. It depends on the design and performance of the vacuum pump. Higher-quality vacuum pumps can achieve lower ultimate vacuum levels, which are important for applications requiring higher levels of vacuum or for processes that are sensitive to residual gases.

4. Leak Detection and Gas Removal: Vacuum pumps can also assist in leak detection and gas removal within the chamber. By continuously evacuating the chamber, any leaks or gas ingress can be identified and addressed promptly. This ensures that the chamber maintains the desired vacuum level and minimizes the presence of contaminants or unwanted gases.

5. Contamination Control: Some vacuum pumps, such as oil-sealed pumps, use lubricating fluids that can introduce contaminants into the chamber. These contaminants may be undesirable for certain applications, such as semiconductor manufacturing or research. Therefore, the choice of vacuum pump and its potential for introducing contaminants should be considered to maintain the required cleanliness and purity of the vacuum chamber.

6. Noise and Vibrations: Vacuum pumps can generate noise and vibrations during operation, which can impact the performance and usability of the vacuum chamber. Excessive noise or vibrations can interfere with delicate experiments, affect the accuracy of measurements, or cause mechanical stress on the chamber components. Selecting vacuum pumps with low noise and vibration levels is important for maintaining optimal chamber performance.

It’s important to note that the specific requirements and performance factors of a vacuum chamber can vary depending on the application. Different types of vacuum pumps, such as rotary vane pumps, dry pumps, or turbomolecular pumps, offer varying capabilities and features that cater to specific needs. The choice of vacuum pump should consider factors such as the desired vacuum level, pumping speed, ultimate vacuum, contamination control, noise and vibration levels, and compatibility with the chamber materials and gases used.

In summary, vacuum pumps have a significant impact on the performance of vacuum chambers. They enable the creation and maintenance of the desired vacuum level, affect the pumping speed and ultimate vacuum achieved, assist in leak detection and gas removal, and influence contamination control. Careful consideration of the vacuum pump selection ensures optimal chamber performance for various applications.

vacuum pump

Can Vacuum Pumps Be Used in Food Processing?

Yes, vacuum pumps are widely used in food processing for various applications. Here’s a detailed explanation:

Vacuum pumps play a crucial role in the food processing industry by enabling the creation and maintenance of vacuum or low-pressure environments. They offer several benefits in terms of food preservation, packaging, and processing. Here are some common applications of vacuum pumps in food processing:

1. Vacuum Packaging: Vacuum pumps are extensively used in vacuum packaging processes. Vacuum packaging involves removing air from the packaging container to create a vacuum-sealed environment. This process helps extend the shelf life of food products by inhibiting the growth of spoilage-causing microorganisms and reducing oxidation. Vacuum pumps are used to evacuate the air from the packaging, ensuring a tight seal and maintaining the quality and freshness of the food.

2. Freeze Drying: Vacuum pumps are essential in freeze drying or lyophilization processes used in food processing. Freeze drying involves removing moisture from food products while they are frozen, preserving their texture, flavor, and nutritional content. Vacuum pumps create a low-pressure environment that allows frozen water to directly sublimate from solid to vapor, resulting in the removal of moisture from the food without causing damage or loss of quality.

3. Vacuum Cooling: Vacuum pumps are utilized in vacuum cooling processes for rapid and efficient cooling of food products. Vacuum cooling involves placing the food in a vacuum chamber and reducing the pressure. This lowers the boiling point of water, facilitating the rapid evaporation of moisture and heat from the food, thereby cooling it quickly. Vacuum cooling helps maintain the freshness, texture, and quality of delicate food items such as fruits, vegetables, and bakery products.

4. Vacuum Concentration: Vacuum pumps are employed in vacuum concentration processes in the food industry. Vacuum concentration involves removing excess moisture from liquid food products to increase their solids content. By creating a vacuum, the boiling point of the liquid is reduced, allowing for gentle evaporation of water while preserving the desired flavors, nutrients, and viscosity of the product. Vacuum concentration is commonly used in the production of juices, sauces, and concentrates.

5. Vacuum Mixing and Deaeration: Vacuum pumps are used in mixing and deaeration processes in food processing. In the production of certain food products such as chocolates, confectioneries, and sauces, vacuum mixing is employed to remove air bubbles, achieve homogeneity, and improve product texture. Vacuum pumps aid in the removal of entrapped air and gases, resulting in smooth and uniform food products.

6. Vacuum Filtration: Vacuum pumps are utilized in food processing for vacuum filtration applications. Vacuum filtration involves separating solids from liquids or gases using a filter medium. Vacuum pumps create suction that draws the liquid or gas through the filter, leaving behind the solid particles. Vacuum filtration is commonly used in processes such as clarifying liquids, removing impurities, and separating solids from liquids in the production of beverages, oils, and dairy products.

7. Marinating and Brining: Vacuum pumps are employed in marinating and brining processes in the food industry. By applying a vacuum to the marinating or brining container, the pressure is reduced, allowing the marinade or brine to penetrate the food more efficiently. Vacuum marinating and brining help enhance flavor absorption, reduce marinating time, and improve the overall taste and texture of the food.

8. Controlled Atmosphere Packaging: Vacuum pumps are used in controlled atmosphere packaging (CAP) systems in the food industry. CAP involves modifying the gas composition within food packaging to extend the shelf life and maintain the quality of perishable products. Vacuum pumps aid in the removal of oxygen or other unwanted gases from the package, allowing the introduction of a desired gas mixture that preserves the food’s freshness and inhibits microbial growth.

These are just a few examples of how vacuum pumps are used in food processing. The ability to create and control vacuum or low-pressure environments is a valuable asset in preserving food quality, enhancing shelf life, and facilitating various processing techniques in the food industry.

China Custom Air Vacuum Compression Low Noise Micro DC 6V Vacuum Pump Supplier   vacuum pump oil near me		China Custom Air Vacuum Compression Low Noise Micro DC 6V Vacuum Pump Supplier   vacuum pump oil near me
editor by CX 2024-04-11

China wholesaler CHINAMFG Variable Pitch Air Cooled Oil Electrical Dry Rotary Screw Vane Vacuum Pump for Vacuum Industry with high quality

Product Description

SCREW PUMP


Due to the special geometric shapes of the 2 components, separate sealed chambers are formed respectively. The medium flows uniformly in the axial direction, the internal flow rate is low, the volume remains unchanged, and the pressure is stable, so turbulence and agitation are not generated. The output pressure of each stage pump is 0.6MPa, and the head is 60m (clean water). Because the stator is made of a variety of elastic materials, this kind of pump has the characteristics that ordinary pumps can’t handle high-viscosity fluid transportation and the transportation of medium containing hard suspended particles or medium containing fiber. The flow rate is proportional to the speed.

The single screw pump has compact structure, small volume and easy maintenance. Strong adaptability to the medium, stable flow and small pressure pulsation. The working temperature is lower than 80ºC, if high temperature medium needs to be transported, it can be customized. It is widely used in food, metallurgy, papermaking, printing and dyeing, chemical, fertilizer, pharmaceutical and other industrial sectors.

Parameter:

Head 60-120m
Speed 0-960Rpm
Power 0.75-75kw
Voltage 380V
Inlet 25-250mm
Outlet 25-250mm
Temperaturer -20C to 150C
Flow 0.8-260m3/h
Others As details

Structure

Parameter

Parts picture

More details,pls contact with us ! /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Max.Head: >150m
Max.Capacity: >400 L/min
Driving Type: Centrifugal Pump
Material: Stainless Steel
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Packaging?

Yes, vacuum pumps can be used for vacuum packaging. Here’s a detailed explanation:

Vacuum packaging is a method used to remove air from a package or container, creating a vacuum environment. This process helps to extend the shelf life of perishable products, prevent spoilage, and maintain product freshness. Vacuum pumps play a crucial role in achieving the desired vacuum level for effective packaging.

When it comes to vacuum packaging, there are primarily two types of vacuum pumps commonly used:

1. Single-Stage Vacuum Pumps: Single-stage vacuum pumps are commonly used for vacuum packaging applications. These pumps use a single rotating vane or piston to create a vacuum. They can achieve moderate vacuum levels suitable for most packaging requirements. Single-stage pumps are relatively simple in design, compact, and cost-effective.

2. Rotary Vane Vacuum Pumps: Rotary vane vacuum pumps are another popular choice for vacuum packaging. These pumps utilize multiple vanes mounted on a rotor to create a vacuum. They offer higher vacuum levels compared to single-stage pumps, making them suitable for applications that require deeper levels of vacuum. Rotary vane pumps are known for their reliability, consistent performance, and durability.

When using vacuum pumps for vacuum packaging, the following steps are typically involved:

1. Preparation: Ensure that the packaging material, such as vacuum bags or containers, is suitable for vacuum packaging and can withstand the vacuum pressure without leakage. Place the product to be packaged inside the appropriate packaging material.

2. Sealing: Properly seal the packaging material, either by heat sealing or using specialized vacuum sealing equipment. This ensures an airtight enclosure for the product.

3. Vacuum Pump Operation: Connect the vacuum pump to the packaging equipment or directly to the packaging material. Start the vacuum pump to initiate the vacuuming process. The pump will remove the air from the packaging, creating a vacuum environment.

4. Vacuum Level Control: Monitor the vacuum level during the packaging process using pressure gauges or vacuum sensors. Depending on the specific packaging requirements, adjust the vacuum level accordingly. The goal is to achieve the desired vacuum level suitable for the product being packaged.

5. Sealing and Closure: Once the desired vacuum level is reached, seal the packaging material completely to maintain the vacuum environment. This can be done by heat sealing the packaging material or using specialized sealing mechanisms designed for vacuum packaging.

6. Product Labeling and Storage: After sealing, label the packaged product as necessary and store it appropriately, considering factors such as temperature, humidity, and light exposure, to maximize product shelf life.

It’s important to note that the specific vacuum level required for vacuum packaging may vary depending on the product being packaged. Some products may require a partial vacuum, while others may require a more stringent vacuum level. The choice of vacuum pump and the control mechanisms employed will depend on the specific vacuum packaging requirements.

Vacuum pumps are widely used in various industries for vacuum packaging applications, including food and beverage, pharmaceuticals, electronics, and more. They provide an efficient and reliable means of creating a vacuum environment, helping to preserve product quality and extend shelf life.

vacuum pump

Can Vacuum Pumps Be Used for Leak Detection?

Yes, vacuum pumps can be used for leak detection purposes. Here’s a detailed explanation:

Leak detection is a critical task in various industries, including manufacturing, automotive, aerospace, and HVAC. It involves identifying and locating leaks in a system or component that may result in the loss of fluids, gases, or pressure. Vacuum pumps can play a significant role in leak detection processes by creating a low-pressure environment and facilitating the detection of leaks through various methods.

Here are some ways in which vacuum pumps can be used for leak detection:

1. Vacuum Decay Method: The vacuum decay method is a common technique used for leak detection. It involves creating a vacuum in a sealed system or component using a vacuum pump and monitoring the pressure change over time. If there is a leak present, the pressure will gradually increase due to the ingress of air or gas. By measuring the rate of pressure rise, the location and size of the leak can be estimated. Vacuum pumps are used to evacuate the system and establish the initial vacuum required for the test.

2. Bubble Testing: Bubble testing is a simple and visual method for detecting leaks. In this method, the component or system being tested is pressurized with a gas, and then immersed in a liquid, typically soapy water. If there is a leak, the gas escaping from the component will form bubbles in the liquid, indicating the presence and location of the leak. Vacuum pumps can be used to create a pressure differential that forces gas out of the leak, making it easier to detect the bubbles.

3. Helium Leak Detection: Helium leak detection is a highly sensitive method used to locate extremely small leaks. Helium, being a small atom, can easily penetrate small openings and leaks. In this method, the system or component is pressurized with helium gas, and a vacuum pump is used to evacuate the surrounding area. A helium leak detector is then used to sniff or scan the area for the presence of helium, indicating the location of the leak. Vacuum pumps are essential for creating the low-pressure environment required for this method and ensuring accurate detection.

4. Pressure Change Testing: Vacuum pumps can also be used in pressure change testing for leak detection. This method involves pressurizing a system or component and then isolating it from the pressure source. The pressure is monitored over time, and any significant pressure drop indicates the presence of a leak. Vacuum pumps can be used to evacuate the system after pressurization, returning it to atmospheric pressure for comparison or retesting.

5. Mass Spectrometer Leak Detection: Mass spectrometer leak detection is a highly sensitive and precise method used to identify and quantify leaks. It involves introducing a tracer gas, usually helium, into the system or component being tested. A vacuum pump is used to evacuate the surrounding area, and a mass spectrometer is employed to analyze the gas samples for the presence of the tracer gas. This method allows for accurate detection and quantification of leaks down to very low levels. Vacuum pumps are crucial for creating the necessary vacuum conditions and ensuring reliable results.

In summary, vacuum pumps can be effectively used for leak detection purposes. They facilitate various leak detection methods such as vacuum decay, bubble testing, helium leak detection, pressure change testing, and mass spectrometer leak detection. Vacuum pumps create the required low-pressure environment, assist in evacuating the system or component being tested, and enable accurate and reliable leak detection. The choice of vacuum pump depends on the specific requirements of the leak detection method and the sensitivity needed for the application.

vacuum pump

What Are the Primary Applications of Vacuum Pumps?

Vacuum pumps have a wide range of applications across various industries. Here’s a detailed explanation:

1. Industrial Processes:

Vacuum pumps play a vital role in numerous industrial processes, including:

– Vacuum Distillation: Vacuum pumps are used in distillation processes to lower the boiling points of substances, enabling separation and purification of various chemicals and compounds.

– Vacuum Drying: Vacuum pumps aid in drying processes by creating a low-pressure environment, which accelerates moisture removal from materials without excessive heat.

– Vacuum Packaging: Vacuum pumps are used in the food industry to remove air from packaging containers, prolonging the shelf life of perishable goods by reducing oxygen exposure.

– Vacuum Filtration: Filtration processes can benefit from vacuum pumps to enhance filtration rates by applying suction, facilitating faster separation of solids and liquids.

2. Laboratory and Research:

Vacuum pumps are extensively used in laboratories and research facilities for various applications:

– Vacuum Chambers: Vacuum pumps create controlled low-pressure environments within chambers for conducting experiments, testing materials, or simulating specific conditions.

– Mass Spectrometry: Mass spectrometers often utilize vacuum pumps to create the necessary vacuum conditions for ionization and analysis of samples.

– Freeze Drying: Vacuum pumps enable freeze-drying processes, where samples are frozen and then subjected to a vacuum, allowing the frozen water to sublimate directly from solid to vapor state.

– Electron Microscopy: Vacuum pumps are essential for electron microscopy techniques, providing the necessary vacuum environment for high-resolution imaging of samples.

3. Semiconductor and Electronics Industries:

High vacuum pumps are critical in the semiconductor and electronics industries for manufacturing and testing processes:

– Semiconductor Fabrication: Vacuum pumps are used in various stages of chip manufacturing, including deposition, etching, and ion implantation processes.

– Thin Film Deposition: Vacuum pumps create the required vacuum conditions for depositing thin films of materials onto substrates, as done in the production of solar panels, optical coatings, and electronic components.

– Leak Detection: Vacuum pumps are utilized in leak testing applications to detect and locate leaks in electronic components, systems, or pipelines.

4. Medical and Healthcare:

Vacuum pumps have several applications in the medical and healthcare sectors:

– Vacuum Assisted Wound Closure: Vacuum pumps are used in negative pressure wound therapy (NPWT), where they create a controlled vacuum environment to promote wound healing and removal of excess fluids.

– Laboratory Equipment: Vacuum pumps are essential in medical and scientific equipment such as vacuum ovens, freeze dryers, and centrifugal concentrators.

– Anesthesia and Medical Suction: Vacuum pumps are utilized in anesthesia machines and medical suction devices to create suction and remove fluids or gases from the patient’s body.

5. HVAC and Refrigeration:

Vacuum pumps are employed in the HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries:

– Refrigeration and Air Conditioning Systems: Vacuum pumps are used during system installation, maintenance, and repair to evacuate moisture and air from refrigeration and air conditioning systems, ensuring efficient operation.

– Vacuum Insulation Panels: Vacuum pumps are utilized in the manufacturing of vacuum insulation panels, which offer superior insulation properties for buildings and appliances.

6. Power Generation:

Vacuum pumps play a role in power generation applications:

– Steam Condenser Systems: Vacuum pumps are used in power plants to remove non-condensable gases from steam condenser systems, improving thermal efficiency.

– Gas Capture: Vacuum pumps are utilized to capture and remove gases, such as hydrogen or helium, in nuclear power plants, research reactors, or particle accelerators.

These are just a few examples of the primary applications of vacuum pumps. The versatility and wide range of vacuum pump types make them essential in numerous industries, contributing to various manufacturing processes, research endeavors, and technological advancements.

China wholesaler CHINAMFG Variable Pitch Air Cooled Oil Electrical Dry Rotary Screw Vane Vacuum Pump for Vacuum Industry   with high quality China wholesaler CHINAMFG Variable Pitch Air Cooled Oil Electrical Dry Rotary Screw Vane Vacuum Pump for Vacuum Industry   with high quality
editor by CX 2024-04-10

China Best Sales Water Vacuum Pump Air Rotary Ring Oil Water Piston Dry Portable Mini Scroll Reciprocating Diaphragm Centrifugal Positive Displacement DC AC Vacuum Pump vacuum pump engine

Product Description

Water Vacuum Pump Air Rotary Ring Oil Water Piston Dry Portable Mini Scroll Reciprocating Diaphragm Centrifugal Positive Displacement DC AC Vacuum Pump

water vacuum pump

Liquid Ring Vacuum Pump Working Principle. The vacuum pump consisting an impeller which is located eccentric to the cylinder body(Vacuum pump housing). Vacuum is created in the vacuum pump by using a liquid seal. … When the impeller starts to rotate, the liquid is starts move outward by centrifugal force.

Water ring vacuum pump is a common type of liquid ring vacuum pump. Water ring is a rotor with multi-blades eccentrically installed in the pump shell. When it rotates, it throws liquid into the pump and forms a liquid ring concentric with the pump shell. The liquid ring and the rotor blade form a rotating variable capacity vacuum pump with periodic volume change. When the working liquid is water, it is called water Ring vacuum pump. There are many kinds of water ring vacuum pumps with different prices. .Among them, 2BV is more cost-effective. The type selection of water ring vacuum pump should be based on your on-site process, the required vacuum degree and the amount of air pumping required.

 

 

company information



 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Installation Guide 1-Year Warranty
Warranty: Installation Guide 1-Year Warranty
Oil or Not: Optional
Inlet Diam. (mm): 100/200mm
Motor Power (Kw): 4/7.5 Kw
Ultimate Pressure (PA): 0.05
Samples:
US$ 999/Piece
1 Piece(Min.Order)

|

vacuum pump

Can Vacuum Pumps Be Used in the Automotive Industry?

Yes, vacuum pumps are widely used in the automotive industry for various applications. Here’s a detailed explanation:

The automotive industry relies on vacuum pumps for several critical functions and systems within vehicles. Vacuum pumps play a crucial role in enhancing performance, improving fuel efficiency, and enabling the operation of various automotive systems. Here are some key applications of vacuum pumps in the automotive industry:

1. Brake Systems: Vacuum pumps are commonly used in vacuum-assisted brake systems, also known as power brakes. These systems utilize vacuum pressure to amplify the force applied by the driver to the brake pedal, making braking more efficient and responsive. Vacuum pumps help generate the required vacuum for power brake assistance, ensuring reliable and consistent braking performance.

2. Emission Control Systems: Vacuum pumps are integral components of emission control systems in vehicles. They assist in operating components such as the Exhaust Gas Recirculation (EGR) valve and the Evaporative Emission Control (EVAP) system. Vacuum pumps help create the necessary vacuum conditions for proper functioning of these systems, reducing harmful emissions and improving overall environmental performance.

3. HVAC Systems: Heating, Ventilation, and Air Conditioning (HVAC) systems in vehicles often utilize vacuum pumps for various functions. Vacuum pumps help control the vacuum-operated actuators that regulate the direction, temperature, and airflow of the HVAC system. They ensure efficient operation and precise control of the vehicle’s interior climate control system.

4. Turbocharger and Supercharger Systems: In performance-oriented vehicles, turbocharger and supercharger systems are used to increase engine power and efficiency. Vacuum pumps play a role in these systems by providing vacuum pressure for actuating wastegates, blow-off valves, and other control mechanisms. These components help regulate the boost pressure and ensure optimal performance of the forced induction system.

5. Fuel Delivery Systems: Vacuum pumps are employed in certain types of fuel delivery systems, such as mechanical fuel pumps. These pumps utilize vacuum pressure to draw fuel from the fuel tank and deliver it to the engine. While mechanical fuel pumps are less commonly used in modern vehicles, vacuum pumps are still found in some specialized applications.

6. Engine Management Systems: Vacuum pumps are utilized in engine management systems for various functions. They assist in operating components such as vacuum-operated actuators, vacuum reservoirs, and vacuum sensors. These components play a role in engine performance, emissions control, and overall system functionality.

7. Fluid Control Systems: Vacuum pumps are used in fluid control systems within vehicles, such as power steering systems. Vacuum-assisted power steering systems utilize vacuum pressure to assist the driver in steering, reducing the effort required. Vacuum pumps provide the necessary vacuum for power steering assistance, enhancing maneuverability and driver comfort.

8. Diagnostic and Testing Equipment: Vacuum pumps are also utilized in automotive diagnostic and testing equipment. These pumps create vacuum conditions necessary for testing and diagnosing various vehicle systems, such as intake manifold leaks, brake system integrity, and vacuum-operated components.

It’s important to note that different types of vacuum pumps may be used depending on the specific automotive application. Common vacuum pump technologies in the automotive industry include diaphragm pumps, rotary vane pumps, and electric vacuum pumps.

In summary, vacuum pumps have numerous applications in the automotive industry, ranging from brake systems and emission control to HVAC systems and engine management. They contribute to improved safety, fuel efficiency, environmental performance, and overall vehicle functionality.

vacuum pump

Can Vacuum Pumps Be Used for Soil and Groundwater Remediation?

Vacuum pumps are indeed widely used for soil and groundwater remediation. Here’s a detailed explanation:

Soil and groundwater remediation refers to the process of removing contaminants from the soil and groundwater to restore environmental quality and protect human health. Vacuum pumps play a crucial role in various remediation techniques by facilitating the extraction and treatment of contaminated media. Some of the common applications of vacuum pumps in soil and groundwater remediation include:

1. Soil Vapor Extraction (SVE): Soil vapor extraction is a widely used remediation technique for volatile contaminants present in the subsurface. It involves the extraction of vapors from the soil by applying a vacuum to the subsurface through wells or trenches. Vacuum pumps create a pressure gradient that induces the movement of vapors towards the extraction points. The extracted vapors are then treated to remove or destroy the contaminants. Vacuum pumps play a vital role in SVE by maintaining the necessary negative pressure to enhance the volatilization and extraction of contaminants from the soil.

2. Dual-Phase Extraction (DPE): Dual-phase extraction is a remediation method used for the simultaneous extraction of both liquids (such as groundwater) and vapors (such as volatile organic compounds) from the subsurface. Vacuum pumps are utilized to create a vacuum in extraction wells or points, drawing out both the liquid and vapor phases. The extracted groundwater and vapors are then separated and treated accordingly. Vacuum pumps are essential in DPE systems for efficient and controlled extraction of both liquid and vapor-phase contaminants.

3. Groundwater Pumping and Treatment: Vacuum pumps are also employed in groundwater remediation through the process of pumping and treatment. They are used to extract contaminated groundwater from wells or recovery trenches. By creating a vacuum or negative pressure, vacuum pumps facilitate the flow of groundwater towards the extraction points. The extracted groundwater is then treated to remove or neutralize the contaminants before being discharged or re-injected into the ground. Vacuum pumps play a critical role in maintaining the required flow rates and hydraulic gradients for effective groundwater extraction and treatment.

4. Air Sparging: Air sparging is a remediation technique used to treat groundwater and soil contaminated with volatile organic compounds (VOCs). It involves the injection of air or oxygen into the subsurface to enhance the volatilization of contaminants. Vacuum pumps are utilized in air sparging systems to create a vacuum or negative pressure zone in wells or points surrounding the contaminated area. This induces the movement of air and oxygen through the soil, facilitating the release and volatilization of VOCs. Vacuum pumps are essential in air sparging by maintaining the necessary negative pressure gradient for effective contaminant removal.

5. Vacuum-Enhanced Recovery: Vacuum-enhanced recovery, also known as vacuum-enhanced extraction, is a remediation technique used to recover non-aqueous phase liquids (NAPLs) or dense non-aqueous phase liquids (DNAPLs) from the subsurface. Vacuum pumps are employed to create a vacuum or negative pressure gradient in recovery wells or trenches. This encourages the movement and extraction of NAPLs or DNAPLs towards the recovery points. Vacuum pumps facilitate the efficient recovery of these dense contaminants, which may not be easily recoverable using traditional pumping methods.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, liquid ring pumps, or air-cooled pumps, may be used in soil and groundwater remediation depending on the specific requirements of the remediation technique and the nature of the contaminants.

In summary, vacuum pumps play a vital role in various soil and groundwater remediation techniques, including soil vapor extraction, dual-phase extraction, groundwater pumping and treatment, air sparging, and vacuum-enhanced recovery. By creating and maintaining the necessary pressure differentials, vacuum pumps enable the efficient extraction, treatment, and removal of contaminants, contributing to the restoration of soil and groundwater quality.

vacuum pump

Can Vacuum Pumps Be Used in Laboratories?

Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here’s a detailed explanation:

Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:

1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.

2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.

3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.

4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.

5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.

6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).

7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.

Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.

China Best Sales Water Vacuum Pump Air Rotary Ring Oil Water Piston Dry Portable Mini Scroll Reciprocating Diaphragm Centrifugal Positive Displacement DC AC Vacuum Pump   vacuum pump engine	China Best Sales Water Vacuum Pump Air Rotary Ring Oil Water Piston Dry Portable Mini Scroll Reciprocating Diaphragm Centrifugal Positive Displacement DC AC Vacuum Pump   vacuum pump engine
editor by CX 2024-04-10

China manufacturer Manufacturer Competitive Vacuum Pump Air Drying Pump with Best Sales

Product Description


CHINAMFG Vacuum Pump Specifications

Model Stage Rated Normal. air flow Normal. suction Normal. Discharge 
Frequency Power Voltage Current
TH 830 H27 Single Hz KW V A m3/h Kpa Kpa
50 7.5 345-415△600-720Y 16.7△/9.6Y 700 -27 26
60 8.6 380-480△660-720Y 17.3△/10.0Y 840 -27 26

Model: TH 830 H27                                                   Brand: SCB
Frequency: 50/60Hz                                                  Motor: IE2 / IE3 
Power: 7.5/ 8.6 kw                                                     Voltage: 345-415△600-720Y
Air flow: 700m3/h                                                       Pressure: 260 / -270 mbar
Packages: Packed in cartons                                     Weight: 74 kg
Installation ways: vertical and Horizontal                   Dimension: 690*630*660mm

SCB Vacuum Pump Advantages

★  Energy Saving

★  IE2 And IE3 Motor, High class protection

★  Easy to install and maintance free

★  Oil free and low noise

★  Competitive Price, good quality, Die-casting process

★  Both suction and blowing at the same time, Durable voltage

SCB Vacuum Pump Test and Shippment

SCB Vacuum Pump Fittings
We have full range fittings for matched the blowers to help you have a much better experience in using our blowers, the fittings we have are silencer, filter, filter barrels, pressure relief valve (metal and plastic) and some connections, here showing some photos:

SCB Vacuum Pump Applications
☆ Air Knife Cleaning and Drying System
☆ Air Coating; Spraying System 
☆ Ultrasonic Washing and Cleaning
☆ PCB & PCBA Cleaning and Drying; 
☆ Plating Cleaning and Drying; Plating Aeration
☆ Pneumatic Conveying system; Central Conveying System; 
☆ Hopper Loader / Vacuum Loader
☆ Vacuum & Turbo Lifting; Vacuum Package Machine
☆ Vacuum Filling Equipment; Bottling drying system
☆ Distillery Plants; Desalination Plant
☆ Dust Cleaning and Collections System; Dust-Free Plant
☆ Dental Suction and Operation
☆ Stocking Knitting Machine; Textile Machine
☆ Printing Machine; Paper Transporting
☆ Soil Remediation; Waste Water Treatment 
☆ Packaging Machine; Wood-working Machine 
☆ Agriculture Field; Fish Farm; Tank Aeration; Aquaculture
☆ Swimming Pool; Spa Pool 
☆ Cooling for Molding; CNC Table 
☆ Food Processing; Milk Suction Equipment
☆ Hospital Pneumatic Tube System
☆ CHINAMFG or Vapor Extraction
Etc.

Here sharing some photos from our customers as below:

SCB Vacuum Pump Factory
Compelete production line and test equipment, let you have a much guaranteed blowers and service!

SCB Vacuum Company service
 A.  Professional design and die-casting blowers make sure the stable capacity
 B.  Engineer Teams help you choosing the best suitable models
 C.  OEM service available
 D.  Full products range: ring blowers, belt-driven blowers, Atex blowers, IP55 etc
 E. 1 year warrenty, 24hours service support
 F. Super quality with Competitive Price
 G. Delivery time is 1week after payment

CHINAMFG Vacuum Pump Introduction
CHINAMFG Vacuum are a company which develop blower for some years. Our main products is vacuum pump, regenerative blower, air blower, belt-driven blower, side channel blower and all parts. The full range models will support you much well in the market.

Vacuum pump are using Die-casting technique, to make sure provide all blowers with stable the capacity and peformance.

The terms we appreciate is FOB, CFR, CIF and EXW etc.

Welcome contact us for more technical information and competitive price!

  CHINAMFG       Fanny
SCB Vacuum Tech Limited

Add: C402, Kaisong Industrial Park, Xihu (West Lake) Dis., Xihu (West Lake) Dis., HangZhou, ZheJiang Province, China

Web: vacuumblower  

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 1 Year
Oil or Not: Oil Free
Samples:
US$ 1259/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

vacuum pump

How Are Vacuum Pumps Employed in the Production of Electronic Components?

Vacuum pumps play a crucial role in the production of electronic components. Here’s a detailed explanation:

The production of electronic components often requires controlled environments with low or no atmospheric pressure. Vacuum pumps are employed in various stages of the production process to create and maintain these vacuum conditions. Here are some key ways in which vacuum pumps are used in the production of electronic components:

1. Deposition Processes: Vacuum pumps are extensively used in deposition processes, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), which are commonly employed for thin film deposition on electronic components. These processes involve the deposition of materials onto substrates in a vacuum chamber. Vacuum pumps help create and maintain the necessary vacuum conditions required for precise and controlled deposition of the thin films.

2. Etching and Cleaning: Etching and cleaning processes are essential in the fabrication of electronic components. Vacuum pumps are used to create a vacuum environment in etching and cleaning chambers, where reactive gases or plasmas are employed to remove unwanted materials or residues from the surfaces of the components. The vacuum pumps help evacuate the chamber and ensure the efficient removal of byproducts and waste gases.

3. Drying and Bake-out: Vacuum pumps are utilized in the drying and bake-out processes of electronic components. After wet processes, such as cleaning or wet etching, components need to be dried thoroughly. Vacuum pumps help create a vacuum environment that facilitates the removal of moisture or solvents from the components, ensuring their dryness before subsequent processing steps. Additionally, vacuum bake-out is employed to remove moisture or other contaminants trapped within the components’ materials or structures, enhancing their reliability and performance.

4. Encapsulation and Packaging: Vacuum pumps are involved in the encapsulation and packaging stages of electronic component production. These processes often require the use of vacuum-sealed packaging to protect the components from environmental factors such as moisture, dust, or oxidation. Vacuum pumps assist in evacuating the packaging materials, creating a vacuum-sealed environment that helps maintain the integrity and longevity of the electronic components.

5. Testing and Quality Control: Vacuum pumps are utilized in testing and quality control processes for electronic components. Some types of testing, such as hermeticity testing, require the creation of a vacuum environment for evaluating the sealing integrity of electronic packages. Vacuum pumps help evacuate the testing chambers, ensuring accurate and reliable test results.

6. Soldering and Brazing: Vacuum pumps play a role in soldering and brazing processes for joining electronic components and assemblies. Vacuum soldering is a technique used to achieve high-quality solder joints by removing air and reducing the risk of voids, flux residuals, or oxidation. Vacuum pumps assist in evacuating the soldering chambers, creating the required vacuum conditions for precise and reliable soldering or brazing.

7. Surface Treatment: Vacuum pumps are employed in surface treatment processes for electronic components. These processes include plasma cleaning, surface activation, or surface modification techniques. Vacuum pumps help create the necessary vacuum environment where plasma or reactive gases are used to treat the component surfaces, improving adhesion, promoting bonding, or altering surface properties.

It’s important to note that different types of vacuum pumps may be used in electronic component production, depending on the specific process requirements. Commonly used vacuum pump technologies include rotary vane pumps, turbo pumps, cryogenic pumps, and dry pumps.

In summary, vacuum pumps are essential in the production of electronic components, facilitating deposition processes, etching and cleaning operations, drying and bake-out stages, encapsulation and packaging, testing and quality control, soldering and brazing, as well as surface treatment. They enable the creation and maintenance of controlled vacuum environments, ensuring precise and reliable manufacturing processes for electronic components.

vacuum pump

Considerations for Selecting a Vacuum Pump for Cleanroom Applications

When it comes to selecting a vacuum pump for cleanroom applications, several considerations should be taken into account. Here’s a detailed explanation:

Cleanrooms are controlled environments used in industries such as semiconductor manufacturing, pharmaceuticals, biotechnology, and microelectronics. These environments require strict adherence to cleanliness and particle control standards to prevent contamination of sensitive processes or products. Selecting the right vacuum pump for cleanroom applications is crucial to maintain the required level of cleanliness and minimize the introduction of contaminants. Here are some key considerations:

1. Cleanliness: The cleanliness of the vacuum pump is of utmost importance in cleanroom applications. The pump should be designed and constructed to minimize the generation and release of particles, oil vapors, or other contaminants into the cleanroom environment. Oil-free or dry vacuum pumps are commonly preferred in cleanroom applications as they eliminate the risk of oil contamination. Additionally, pumps with smooth surfaces and minimal crevices are easier to clean and maintain, reducing the potential for particle buildup.

2. Outgassing: Outgassing refers to the release of gases or vapors from the surfaces of materials, including the vacuum pump itself. In cleanroom applications, it is crucial to select a vacuum pump with low outgassing characteristics to prevent the introduction of contaminants into the environment. Vacuum pumps specifically designed for cleanroom use often undergo special treatments or use materials with low outgassing properties to minimize this effect.

3. Particle Generation: Vacuum pumps can generate particles due to the friction and wear of moving parts, such as rotors or vanes. These particles can become a source of contamination in cleanrooms. When selecting a vacuum pump for cleanroom applications, it is essential to consider the pump’s particle generation level and choose pumps that have been designed and tested to minimize particle emissions. Pumps with features like self-lubricating materials or advanced sealing mechanisms can help reduce particle generation.

4. Filtration and Exhaust Systems: The filtration and exhaust systems associated with the vacuum pump are critical for maintaining cleanroom standards. The vacuum pump should be equipped with efficient filters that can capture and remove any particles or contaminants generated during operation. High-quality filters, such as HEPA (High-Efficiency Particulate Air) filters, can effectively trap even the smallest particles. The exhaust system should be properly designed to ensure that filtered air is released outside the cleanroom or passes through additional filtration before being reintroduced into the environment.

5. Noise and Vibrations: Noise and vibrations generated by vacuum pumps can have an impact on cleanroom operations. Excessive noise can affect the working environment and compromise communication, while vibrations can potentially disrupt sensitive processes or equipment. It is advisable to choose vacuum pumps specifically designed for quiet operation and that incorporate measures to minimize vibrations. Pumps with noise-dampening features and vibration isolation systems can help maintain a quiet and stable cleanroom environment.

6. Compliance with Standards: Cleanroom applications often have specific industry standards or regulations that must be followed. When selecting a vacuum pump, it is important to ensure that it complies with relevant cleanroom standards and requirements. Considerations may include ISO cleanliness standards, cleanroom classification levels, and industry-specific guidelines for particle count, outgassing levels, or allowable noise levels. Manufacturers that provide documentation and certifications related to cleanroom suitability can help demonstrate compliance.

7. Maintenance and Serviceability: Proper maintenance and regular servicing of vacuum pumps are essential for their reliable and efficient operation. When choosing a vacuum pump for cleanroom applications, consider factors such as ease of maintenance, availability of spare parts, and access to service and support from the manufacturer. Pumps with user-friendly maintenance features, clear service instructions, and a responsive customer support network can help minimize downtime and ensure continued cleanroom performance.

In summary, selecting a vacuum pump for cleanroom applications requires careful consideration of factors such as cleanliness, outgassing characteristics, particle generation, filtration and exhaust systems, noise and vibrations, compliance with standards, and maintenance requirements. By choosing vacuum pumps designed specifically for cleanroom use and considering these key factors, cleanroom operators can maintain the required level of cleanliness and minimize the risk of contamination in their critical processes and products.

vacuum pump

What Industries Commonly Rely on Vacuum Pump Technology?

Vacuum pump technology finds applications in various industries where creating and controlling vacuum or low-pressure environments is crucial. Here’s a detailed explanation:

1. Manufacturing and Production: Vacuum pumps are extensively used in manufacturing and production processes across multiple industries. They are employed for tasks such as vacuum molding, vacuum packaging, vacuum degassing, vacuum drying, and vacuum distillation. Industries like automotive, aerospace, electronics, pharmaceuticals, and food processing rely on vacuum pump technology to achieve precise and controlled manufacturing conditions.

2. Chemical and Pharmaceutical: The chemical and pharmaceutical industries heavily rely on vacuum pumps for numerous applications. These include solvent recovery, vacuum filtration, vacuum drying, distillation, crystallization, and evaporation. Vacuum pumps enable these industries to carry out critical processes under reduced pressure, ensuring efficient separation, purification, and synthesis of various chemical compounds and pharmaceutical products.

3. Semiconductor and Electronics: The semiconductor and electronics industries extensively use vacuum pumps for manufacturing microchips, electronic components, and electronic devices. Vacuum pumps are crucial in processes such as physical vapor deposition (PVD), chemical vapor deposition (CVD), etching, ion implantation, and sputtering. These processes require controlled vacuum conditions to ensure precise deposition, surface modification, and contamination-free manufacturing.

4. Research and Development: Vacuum pump technology is integral to research and development activities across scientific disciplines. It supports experiments and investigations in fields such as physics, chemistry, materials science, biology, and environmental science. Vacuum pumps facilitate processes like freeze drying, vacuum distillation, vacuum evaporation, vacuum spectroscopy, and creating controlled atmospheric conditions for studying various phenomena.

5. Food and Beverage: The food and beverage industry relies on vacuum pumps for packaging and preservation purposes. Vacuum sealing is used to extend the shelf life of food products by removing air and creating a vacuum-sealed environment that inhibits spoilage and maintains freshness. Vacuum pumps are also used in processes like freeze drying, vacuum concentration, and vacuum cooling.

6. Oil and Gas: In the oil and gas industry, vacuum pumps play a role in various applications. They are used for crude oil vacuum distillation, vacuum drying, vapor recovery, gas compression, and gas stripping processes. Vacuum pumps help maintain optimal conditions during oil refining, gas processing, and petrochemical manufacturing.

7. Environmental and Waste Management: Vacuum pumps are employed in environmental and waste management applications. They are used for tasks such as soil vapor extraction, groundwater remediation, landfill gas recovery, and wastewater treatment. Vacuum pumps facilitate the removal and containment of gases, vapors, and pollutants, contributing to environmental protection and sustainable waste management.

8. Medical and Healthcare: The medical and healthcare sectors utilize vacuum pumps for various purposes. They are used in medical equipment such as vacuum-assisted wound therapy devices, vacuum-based laboratory analyzers, and vacuum suction systems in hospitals and clinics. Vacuum pumps are also used in medical research, pharmaceutical production, and medical device manufacturing.

9. Power Generation: Vacuum pumps play a role in power generation industries, including nuclear power plants and thermal power plants. They are used for steam condensation, turbine blade cooling, vacuum drying during transformer manufacturing, and vacuum systems for testing and maintenance of power plant equipment.

10. HVAC and Refrigeration: The HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries rely on vacuum pumps for system installation, maintenance, and repair. Vacuum pumps are used to evacuate air and moisture from refrigerant lines and HVAC systems, ensuring optimal system performance and efficiency.

These are just a few examples of industries that commonly rely on vacuum pump technology. The versatility and wide-ranging applications of vacuum pumps make them indispensable tools across numerous sectors, enabling precise control over vacuum conditions, efficient manufacturing processes, and scientific investigations.

China manufacturer Manufacturer Competitive Vacuum Pump Air Drying Pump   with Best Sales China manufacturer Manufacturer Competitive Vacuum Pump Air Drying Pump   with Best Sales
editor by CX 2024-04-09

China Hot selling LG 50 2.2kw 50m3/H Air Cooled Dry Oil Free Screw Vacuum Pump for Lab Vacuum Distillation vacuum pump diy

Product Description

 

Product Description

The dry screw vacuum pump is a rotor that uses a pair of parallel screws to make synchronous, high-speed and reverse rotation in the pump housing. The rotor and the inner wall of the pump body form a number of sealing spaces. During the rotation, the continuous transmission of gas is formed to achieve the purpose of suction and exhaust.

The screw vacuum pump has a simple structure, but its processing technology requires higher requirements. It must ensure that the height between rotors is parallel, and that between rotors and between rotors and the inner wall of the pump body, there is a very small gap and no friction caused by contact, so as to ensure the realization of gas transmission and reduce gas backflow without the need for oil lubrication and sealing.

This requires that the entire product must be the highest standard from material selection to processing. Because the clearance between components is required to be very small, it is necessary to ensure that the screw and pump body materials are not easy to deform, especially when the temperature changes to a certain value, the locking phenomenon cannot occur due to deformation. Special material treatment shall be selected to ensure the fine processing of all parts. In addition to the fine processing of the 2 screws, dynamic balance correction shall be carried out. The shaft end bearing must be a high-quality special bearing, which not only ensures the parallelism of the screw rotor and is not prone to slight displacement, but also ensures smooth rotation and is not affected by temperature and other factors. When the vacuum pump is working, the clearance between them is small without friction, the operation is stable, the vibration is small, the noise is low, the energy is saved, and the service life is extended. The special screw structure can continuously promote the air flow without compression. The exhaust port is lower than the screw position, the liquid discharge capacity is strong, and it is easy to clean. The pump cavity has short channels, no partitions, and the exhaust and discharge are smooth, so the working efficiency is high, the suction is super strong, and the limit vacuum degree of the pump is greatly improved, It can provide high vacuum ≤ 5Pa or even close to 1Pa; There is no lubrication and pollution in the working chamber, which can provide a clean vacuum without worrying about backflow pollution. Extracts can also be directly recycled or discharged without environmental pressure. Elaborate design, simple structure and precise processing make it more convenient to use and easier to maintain, which is favored by many industry users. It is widely used, not only to extract condensable gas, but also to extract gas containing a large amount of water vapor and a small amount of dust. The specially treated overflow surface can also be used to extract certain corrosive gas, and it is also a special product for oil and gas recovery, solvent recovery, special gas recovery and other industries.
 

Our Advantages

1,Clean and environment-friendly, the working chamber is free of lubricating oil, which is conducive to medium recovery, can obtain clean vacuum, no oil consumption, waste water discharge, and no pollution to the environment.
2,The vacuum degree is high, the limit vacuum degree is ≤ 1Pa, and the pumping capacity in the high vacuum area is large.
3,The anti-corrosion design is optional. The flow passage parts are made of titanium, stainless steel, nano ceramics, spraying NIP alloy and other materials and anti-corrosion coatings.
4,The condensable gas and a small amount of dust gas can be removed, and an automatic purging device is designed.
5,Special shaft seal design prevents mutual pollution between pumped medium and lubricating oil.
6,Variable pitch screw pump saves energy and has low noise.
7,The operation is stable, the rotor is subject to fine dynamic balance test, and the operation vibration is small.
8,High configuration, sealed in Germany, bearing NSK, gear grade 5 grinding.
 

Typical Use

——Oil and gas recovery.    ——Biological medicine ——Food Processing —— Single crystal furnace
——Vacuum forming ——Vacuum flame refining ——Electronic photovoltaic. ——Semiconductor synthesis

Screw vacuum pump can be configured according to user requirements, or it can use explosion-proof motor with high configuration. Because of its low noise, no oil and no pollution, clean and high vacuum, simple and convenient use, operation and maintenance, it is widely used in oil and gas recovery, vacuum coating, biomedicine, food processing, single crystal furnace, vacuum molding, vacuum smelting, electronic photovoltaic, semiconductor synthesis and many other industries. It can be used as a single pump or as a unit with other pumps.
 

Product Parameters

The dry oil-free screw vacuum pump produced by our company can be divided into air cooling and water cooling according to the vacuum pumping rate, and there are many models for you to choose.

 Air cooling   Dry screw vacuum pump

Type
(Air cooled series)
 Basic parameters 
Pumping speed
(m3/h)
Presure limit(Pa)  Power (kW)  revolution (rpm) Inlet caliber
(mm)
outlet caliber (mm) Pump head weight
(kg)
noise dB(A) Overall dimension
(length*width*height)
(mm)
LG-10 10 ≤5 0.75 2730 KF16 KF16 30 ≤ 72 655x260x285
LG-20 20 ≤5 1.1 2840 KF25 KF25 55 ≤72 720x305x370
LG-50 50 ≤10 2.2 2850 KF40 KF40 90 ≤75 920x350x420
LG-70 70 ≤30 3 2850 KF40 KF40 110 ≤75 910x390x460
LG-90 90 ≤30 4 2870 KF50 KF50 125 ≤80 1000x410x495

Water cooling Dry screw vacuum pump

 

Type                                                                             Basic parameters
Pumping speed
m3/h
Presure limit(Pa)  Power (kW)  revolution (rpm) Inlet caliber
mm
outlet caliber mm Cooling water volume
L/min
noise dB(A) Overall dimension
(length*width*height)
mm
LGV-180 180 5 4 2900 40 40 2 < 78 1157x375x734
LGV-250 250 5 5.5 2900 50 40 5.5 <78 1462x417x820
LGV-360 360 5 7.5 2900 50 40 4 W78 1462x455x820
LGV-540 540 5 11 2900 65 50 8 W80 1578x543x860
LGV-720 720 5 15 2900 80 65 10 <80 1623x562x916
LGV-1100 1100 5 22 2900 100 80 14 w 80 1866x598x1050
LG V-1800 1800 5 37 2900 150 100 20 w 80 2092×951 x 1150

Characteristic Curve

 

Detailed Photos

Vacuum pumps are used in oiling machines

General Manager Speech

Deeply cultivate the vacuum technology, and research,develop and manufacture the vacuum equipment to provide the best solution in the vacuum field and make the vacuum application easier.

Company Profile

ZheJiang Kaien Vacuum Technology Co., Ltd. is a high-tech enterprise integrating R & D, production and operation of vacuum equipment. The company has strong technical force, excellent equipment and considerate after-sales service. The product manufacturing process is managed in strict accordance with IS09001 quality system. It mainly produces and sells screw vacuum pump, roots pump, claw vacuum pump, runoff vacuum pump, scroll pump, water ring vacuum pump, vacuum unit and other vacuum systems.

 New plant plHangZhou

The company’s products have been for a number of food, medicine, refrigeration, drying plants and a number of transformer related equipment manufacturers for vacuum equipment. The products are widely used in vacuum drying and dehydration, kerosene vapor phase drying, vacuum impregnation, vacuum metallurgy, vacuum coating, vacuum evaporation, vacuum concentration, oil and gas recovery, etc.

 High precision machining equipment

The company cooperates with many scientific research institutions and universities, such as ZheJiang University, China University of petroleum, ZheJiang Institute of mechanical design, etc.with colleges and universities to research and develop core technologies, and owns dozens of independent intellectual property patents.Our technology is leading, the product quality is stable, the product has a good reputation in China’s domestic market, is sold all over the country, and is exported to Europe, America, Africa, the Middle East and Southeast Asia,We adhering to the basic tenet of quality, reputation and service, the company takes leading-edge technology of vacuum pump as its own responsibility, and wholeheartedly serves customers of vacuum equipment application in various industries with rigorous working attitude and professional working style.

   Product quality wins consumer cooperation

In shipment

ISO 9001

High tech enterprise certificate

  Welcome to send your needs, we will provide you with the best service,

provide the greatest help!!!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Lifetime Paid Service
Warranty: One Year
Oil or Not: Oil Free
Structure: Screw
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Customization:
Available

|

screw vane pump

What are the cost considerations when purchasing and maintaining screw vacuum pumps?

When purchasing and maintaining screw vacuum pumps, several cost considerations come into play. Here’s a detailed explanation of the key factors to consider:

1. Initial Purchase Cost:

The initial purchase cost of a screw vacuum pump is an important consideration. The cost can vary depending on factors such as the pump’s capacity, specifications, features, and the manufacturer. Generally, screw vacuum pumps tend to have a higher upfront cost compared to some other types of vacuum pumps. However, it’s essential to evaluate the long-term benefits and performance advantages offered by screw vacuum pumps to determine their overall value for the specific application.

2. Energy Consumption:

Energy consumption is a significant ongoing cost associated with operating screw vacuum pumps. While screw vacuum pumps are known for their high efficiency, it’s important to consider the power requirements and energy consumption of the specific pump model. Opting for energy-efficient screw vacuum pumps can result in long-term cost savings by reducing electricity bills and minimizing the environmental impact. Additionally, pumps equipped with advanced control systems or variable speed drives allow for better energy optimization and can further enhance cost-effectiveness.

3. Maintenance and Service:

Maintenance and service costs are important considerations throughout the lifecycle of a screw vacuum pump. Regular maintenance is necessary to ensure optimal performance, reliability, and longevity of the equipment. The specific maintenance requirements and associated costs can vary depending on the pump model and manufacturer. It’s crucial to follow the manufacturer’s recommended maintenance schedule and guidelines. Some maintenance tasks may include changing seals, replacing filters, inspecting and lubricating bearings, and monitoring performance parameters. Proper maintenance can prevent costly breakdowns, extend the pump’s service life, and minimize unexpected repair expenses.

4. Spare Parts and Consumables:

When budgeting for screw vacuum pumps, it’s important to consider the cost of spare parts and consumables. Over time, certain components of the pump may require replacement, such as seals, gaskets, filters, or lubricants. The availability and cost of these spare parts can vary depending on the pump model and manufacturer. It’s advisable to inquire about the availability, pricing, and expected lifespan of consumables when purchasing the pump and factor these costs into the overall budget.

5. Operational Downtime:

Operational downtime can have significant cost implications for any industrial process. When a screw vacuum pump requires maintenance, repair, or replacement, it may result in downtime, leading to production interruptions, decreased efficiency, and potential revenue loss. Therefore, it’s important to consider the reliability, serviceability, and availability of technical support when choosing a screw vacuum pump. Opting for reputable manufacturers with a track record of providing reliable products and responsive customer support can help minimize operational downtime and mitigate associated costs.

6. Lifecycle Cost Analysis:

When evaluating the cost considerations of screw vacuum pumps, it’s beneficial to conduct a lifecycle cost analysis. This analysis takes into account not only the initial purchase cost but also the long-term operational costs, maintenance expenses, energy consumption, and expected service life of the pump. By considering the total cost of ownership over the pump’s lifespan, including factors like efficiency, reliability, and maintenance requirements, it becomes easier to assess the cost-effectiveness of different pump options and make informed purchasing decisions.

7. Warranty and After-Sales Support:

Considering the warranty and after-sales support offered by the pump manufacturer is essential. A comprehensive warranty can provide cost protection against potential defects or premature failures. Additionally, reliable after-sales support, technical assistance, and readily available spare parts can contribute to minimizing downtime, reducing repair costs, and ensuring the long-term performance of the screw vacuum pump.

In summary, the cost considerations when purchasing and maintaining screw vacuum pumps include the initial purchase cost, energy consumption, maintenance and service expenses, spare parts and consumables, operational downtime, lifecycle cost analysis, and warranty and after-sales support. By carefully evaluating these factors and assessing the specific needs of the application, businesses can make informed decisions to optimize cost-effectiveness and achieve reliable vacuum pump performance.

screw vane pump

What safety features should be considered when operating screw vacuum pumps?

When operating screw vacuum pumps, it is important to consider several safety features to ensure the protection of personnel, equipment, and the surrounding environment. Here’s a detailed explanation of the safety features that should be considered:

1. Overpressure Protection:

Screw vacuum pumps should be equipped with overpressure protection mechanisms to prevent the system from exceeding safe pressure limits. This can include pressure relief valves or rupture discs that automatically release excess pressure to avoid equipment damage or catastrophic failures. It is essential to set the pressure relief devices at appropriate levels and regularly inspect and maintain them to ensure their proper functioning.

2. Emergency Stop Button:

An emergency stop button should be easily accessible near the screw vacuum pump or within the control panel. This allows operators to quickly shut down the pump in case of emergencies, such as equipment malfunction, safety hazards, or personnel injury. The emergency stop button should be clearly labeled, well-maintained, and tested regularly to ensure its effectiveness.

3. Motor and Drive Protections:

The motor and drive system of the screw vacuum pump should be equipped with safety features to prevent overheating, overloading, and electrical faults. This can include thermal overload protection, motor temperature sensors, current monitoring devices, and short-circuit protection mechanisms. These safety features help safeguard the integrity of the motor and drive system, reducing the risk of fire, electrical hazards, and equipment damage.

4. Vacuum Level Monitoring:

Monitoring the vacuum level is crucial for safe operation. Screw vacuum pumps should be equipped with vacuum gauges or sensors to provide real-time information on the vacuum level. This allows operators to ensure that the system is operating within the desired range and helps detect any abnormal conditions or leaks. Alarms or visual indicators can also be implemented to alert operators when the vacuum level deviates from the set parameters.

5. Cooling and Ventilation:

Screw vacuum pumps generate heat during operation, and adequate cooling and ventilation systems should be in place to prevent overheating. This can include fans, heat exchangers, or cooling fins to dissipate heat effectively. Proper ventilation should be ensured to prevent the accumulation of flammable or hazardous gases. It is important to regularly inspect the cooling and ventilation systems and clean or replace components as needed to maintain optimal performance and safety.

6. Isolation and Lockout/Tagout:

Isolation valves should be installed in the suction and discharge lines of screw vacuum pumps to allow for safe maintenance, repair, or shutdown procedures. Lockout/Tagout (LOTO) procedures should be followed when performing maintenance or service activities. This involves locking and tagging the energy sources, such as electrical power or compressed air, to prevent accidental startup or release of stored energy. Adequate training and awareness of LOTO procedures are essential for personnel safety.

7. Safety Signage and Labels:

Clear and visible safety signage and labels should be placed near the screw vacuum pump and control panel to provide important safety information, warnings, and operating instructions. This includes labels for emergency stop buttons, voltage ratings, hazardous areas, and safety precautions. Safety signs should comply with relevant standards and regulations and be regularly inspected to ensure their visibility and legibility.

8. Operator Training and PPE:

Proper training should be provided to operators working with screw vacuum pumps to ensure they understand the safe operating procedures, potential hazards, and emergency protocols. Operators should also wear appropriate personal protective equipment (PPE) such as safety glasses, gloves, and hearing protection, as required by the specific operating conditions and industry regulations.

In summary, several safety features should be considered when operating screw vacuum pumps. These include overpressure protection, emergency stop buttons, motor and drive protections, vacuum level monitoring, cooling and ventilation systems, isolation and lockout/tagout procedures, safety signage, operator training, and the use of personal protective equipment. Implementing these safety features helps mitigate risks, protect personnel and equipment, and maintain a safe working environment during screw vacuum pump operation.

screw vane pump

Can screw vacuum pumps handle both dry and wet processes?

Yes, screw vacuum pumps are capable of handling both dry and wet processes, making them versatile for a wide range of applications. The ability to handle both types of processes depends on the specific design and configuration of the screw vacuum pump, as well as any additional features or accessories that may be incorporated. Here’s a detailed explanation:

Dry Processes:

In dry processes, the screw vacuum pump operates without the presence of liquid or moisture. Dry screw vacuum pumps rely on tight clearances between the rotors (screws) and the pump housing to create an effective seal. This seal prevents gas or vapor from leaking back into the inlet or escaping to the atmosphere. The absence of liquid or moisture in the process stream helps maintain the integrity of the pump’s sealing mechanism and ensures reliable operation. Dry screw vacuum pumps are commonly used in applications where the process gas or vapor is predominantly dry and free from liquid carryover or condensable vapors.

Wet Processes:

In wet processes, the screw vacuum pump encounters liquids or moisture along with gas or vapor. These liquids can be in the form of condensable vapors, liquid carryover, or entrained liquid droplets. To handle wet processes, screw vacuum pumps may incorporate additional features or accessories to prevent damage, maintain performance, and ensure reliable operation. Some common methods used to handle wet processes include:

  • Liquid Seals: Certain screw vacuum pump designs utilize a liquid sealant to create a barrier between the process gas or vapor and the pump’s internal components. The liquid sealant helps prevent gas leakage, provides lubrication, and assists in sealing the clearances between the rotors and housing. This feature enables the pump to handle wet processes effectively by containing the liquid and maintaining proper sealing.
  • Separators and Filters: Screw vacuum pumps can be equipped with separators and filters to separate liquid droplets or solid particles from the gas or vapor stream. These components help protect the pump from potential damage caused by liquid or solid contamination and ensure the efficient operation of the pump.
  • Specific Design Considerations: Screw vacuum pump manufacturers may incorporate design modifications to enhance the pump’s ability to handle wet processes. This can include optimized clearances, corrosion-resistant materials, and specialized coatings or treatments to protect against liquid or moisture exposure.

It’s important to note that the specific capabilities of a screw vacuum pump in handling wet processes may vary between different models and manufacturers. Therefore, when selecting a screw vacuum pump for a wet process application, it is advisable to consult the manufacturer’s specifications, recommendations, and any additional guidance provided to ensure the pump is suitable for the intended process conditions.

In summary, screw vacuum pumps can handle both dry and wet processes, although the specific design and features of the pump may need to be considered for optimal performance in wet applications. Dry screw vacuum pumps are suitable for predominantly dry processes, while wet processes may require the use of liquid seals, separators, filters, or specialized design considerations to handle the presence of liquids or moisture effectively.

China Hot selling LG 50 2.2kw 50m3/H Air Cooled Dry Oil Free Screw Vacuum Pump for Lab Vacuum Distillation   vacuum pump diyChina Hot selling LG 50 2.2kw 50m3/H Air Cooled Dry Oil Free Screw Vacuum Pump for Lab Vacuum Distillation   vacuum pump diy
editor by CX 2024-04-09