Tag Archives: electric vacuum pump

China best Electric Oil Free Screw Vacuum Pump for Electronics Industry vacuum pump engine

Product Description

                                       EXTERIOR DESIGN                                                                INTERIOR DESIGN

Product Parameters

Screw Vacuum Pump

Feature of Screw Vacuum Pump:
1.Negative pressure stable, improve product pass rate
2. Improve production efficiency, avoid duplication of work
3.Energy-saving stable and efficient, energy-saving between 25%-75%
4.Compression Cavity oil-free Lubrication, reduce operating costs
5.Simple structure, easy maintenance, reduce maintenance time
6.The best industrial investment products, Rapid Return Cycle
 

Product Name Screw Vacuum Pump
Voltage 220V/380V/440V/525V
Weight 480-11000kg
Motor power 5.5KW-250KW
Outlet Size DN80-DN400
Pressure 10-85Kpa
Driven Method Permanent Magnet Synchronization
Type High pressure/Low pressure
Feature Oil-free
OEM/ODM Accept customization,Voltage/power/horsepower/working pressure can be customized

  We accept non-standard orders, export orders, voltage/power/pressure,etc., which can be customized. If you are interested in our products, please contact us!                        

Product Description

Related Products

Our Advantages

Company Profile

Certifications

Customer Photo

Packaging & Shipping

Frequency Asked Question:

Q1: Are you factory or trade company?  
A1: We are factory.

Q2: What the exactly address of your factory? 
A2: Our Factory is Located in Xihu (West Lake) Dis. CountyHangZhou CityZheJiang  Province, China.

Q3: Will you provide spare parts of your products? 
A3: Yes, We provide all parts to customer, so you can do repair or maintenance without trouble.

Q4: Can you accept OEM orders? 
A4: Yes, with professional design team, OEM orders are highly welcome.

Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products.380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.

Q6: Warranty terms of your machine?
A6Two years warranty for the machine and technical support always according to your needs.

Q7: Can you provide the best price?
A7:According to your order, we will provide you the best price.

If you are interested in our products, please contact us!                         /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 1 Year
Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Vacuum
Customization:
Available

|

Vacuum Pump

Types of vacuum pumps

A vacuum pump is a device that pulls gas molecules out of a sealed volume and maintains a partial vacuum. Its job is to create a relative vacuum within its capabilities. Several types of vacuum pumps are available, including scroll and rotary piston models. Each has its own characteristics and uses. To learn more, read this article.

Screw Pump

Screw vacuum pumps use a mechanical screw to move an air or gas chamber to the axial housing wall. The movement of the chamber reduces the volume of gas, which is pre-compressed before being expelled through the pressure connection. These pumps can be single-pitch models or variable-pitch models. Variable pitch models feature variable pitch rotors that help distribute heat loads evenly across the rotor. Some models also include a thermostatic control valve that shuts off the pump if the water temperature gets too high. Screw vacuum pumps are available in single-ended or double-ended designs. Single-ended and double-ended screw pumps provide up to 3.7 x 10-4 Torr and an ultimate vacuum of 900 m3/h (560 cfm), which is sufficient for many industrial processes. Progressive cavity pumps are particularly suitable for vapor compression applications. These pumps also have an internal rotor to minimize layer formation. Combined with air cooling, they are suitable for use in hazardous environments. In addition, the screw rotor design prevents the build-up of substances in the pump cavity that could react with high temperatures. These pumps are also easily removable for quick cleaning. Screw vacuum pumps are also designed for low cost and minimal maintenance. Agknx screw vacuum pumps are designed in Germany and are very reliable and economical. Pump performance depends on cooling system and temperature. The temperature of the water used should be kept within a certain range, otherwise the pump may overheat and fail. Screw vacuum pumps are often used in scientific experiments. They are standard main pumps in large storage rings, gravitational wave detectors, and space simulation chambers. One of the largest ultra-high vacuum chambers in the world is made of screw vacuum pumps. An example is the KATRIN experiment. There are two types of screw vacuum pumps: oil-sealed and dry. Oil-sealed screw pumps use oil as a sealant and coolant. They are suitable for demanding vacuum applications such as woodworking and plastics processing. Dry screw pumps have an air-cooled chamber, and they can achieve higher vacuum levels than oil-sealed pumps.

Rotary Piston Vacuum Pumps

Rotary Piston Vacuum Pumps provide the rugged performance essential for applications requiring vacuum. They can deliver flow rates up to 1280 acfm and reach deep vacuum levels up to 0.0004 Torr. They are available in single-stage and two-stage models. The report also provides detailed information about the key players, their financial status, and business overview. A rotary piston vacuum pump is a versatile and affordable vacuum device. They are available in single-stage and two-stage configurations with higher capacity and higher vacuum. They can be easily maintained by an in-house maintenance team or by a local third-party service shop. Pump manufacturers can also provide services. Rotary piston vacuum pumps are available in single-stage and compound designs. They are ideal for a variety of applications. Their high-performance design enables them to operate at any pressure up to atmospheric pressure. They also have no metal-to-metal contact, which makes them ideal for dirty applications. Whether you need a pump that can operate at high or low pressure, a rotary piston vacuum pump is an excellent choice. When purchasing a rotary piston vacuum pump, it is important to choose a manufacturer with a reputation for providing high-quality service and repairs. In addition to the high quality of the pump, you also need to ensure its availability. You should also consider the cost and quality of the part. A good vacuum pump company should also provide technical support, service support and accessories. Oil-free pumps are a popular choice for laboratories, clean rooms and confined rooms. Their high-quality parts are made from lightweight, corrosion-resistant and specially formulated polymers. Oil-free pumps can handle high levels of air moisture and are excellent at removing contaminants. However, they are not suitable for applications containing organic vapors or acids. Atlas Copco’s GLS rotary piston pumps are a popular choice for industrial vacuum applications. Its space-saving design makes it an ideal solution for harsh environments. It is also very reliable and has low lifecycle costs. It has an automatic lubrication system and water mizer to minimize water consumption.
Vacuum Pump

Scroll Vacuum Pumps

<br Scroll Vacuum Pumps can be used to pump air, gases, and other fluids. They are suitable for creating a vacuum in transfer chambers, mass spectrometers, and load lock chambers. They are also ideal for helium leak detectors and other analytical equipment. Scroll vacuum pumps are available in a variety of models, including the diaphragm, turbine, and oil-dry scroll models. They are used in a variety of industries, including the semiconductor, biotechnology, and pharmaceutical industries. Flexible and durable oil-free scroll vacuum pumps are an excellent choice for light industrial, general laboratory, and research applications. They also offer several advantages over other vacuum pumps, including low operating costs and environmental sustainability. Scroll vacuum pumps do not require oil, which is a big advantage in terms of cost. Scroll vacuum pumps are also quieter. Scroll vacuum pumps are designed for low, medium, and high vacuum systems. They create a high vacuum and cannot tolerate particles. Although they are relatively small, they are ideal for vacuum laboratory applications and are also suitable for dry vacuum pumping. They can be combined with chemically resistant PTFE components, making them more suitable for chemical applications. Scroll vacuum pumps feature a unique design that makes them very versatile and efficient. The pump has two helical structures, one is fixed and the other is rotating, which can effectively pump gas and liquid. When the rotor begins to move, the gas is compressed slightly and then flows through the system to the exhaust port. Scroll vacuum pumps are efficient, oil-free and compact. Known for their high tolerance to the atmosphere, they feature sensorless INFORM(r) control to minimize noise and vibration. These vacuum pumps are ideal for low to medium flow applications including analytical equipment, freeze dryers, vacuum coaters and mass spectrometers. The most important advantage of a scroll vacuum pump is its reliability. They can be used for three years or more without problems and are easy to maintain. With proper maintenance, they can reduce repair costs.
Vacuum Pump

Diaphragm vacuum pumps

Diaphragm vacuum pumps are used in a variety of industrial processes. These pumps use an elastic diaphragm fixed around the outer diameter. They are efficient and can handle most types of liquids. They are commonly used for dewatering, filling and water removal. These pumps are easy to maintain. Diaphragm vacuum pumps are available in a variety of sizes and power outputs. Oil-free diaphragm vacuum pumps do not require oil, lubrication and cooling. These pumps are compatible with many types of laboratory equipment. Diaphragm vacuum pumps are equipped with dual voltage motors and DC drives for greater flexibility and durability. Diaphragm vacuum pumps can achieve higher vacuum levels than rotary vane pumps. They are more efficient than diaphragm pumps. They do not require oil and require less maintenance than their rotary vane counterparts. However, the diaphragms of these pumps may need to be replaced every few years. Diaphragm vacuum pumps are the most popular type of vacuum pump and can be used for a variety of applications. They can be used for everyday work and can be large enough to be used in a vacuum oven or rotary evaporator. Diaphragm vacuum pumps use pulsed motion to move air. They eliminate the need for oil and are highly chemical and steam resistant. They can handle a wide variety of samples, including high viscosity liquids. Diaphragm vacuum pumps are generally smaller than other types of vacuum pumps. Scroll pumps are made of metal and are generally recommended for solvent and water samples. They are not recommended for high acid samples. However, they are suitable for freeze drying. They can also be used for concentration applications. In this way, they have greater displacement capacity and can reach higher ultimate vacuum levels.

China best Electric Oil Free Screw Vacuum Pump for Electronics Industry   vacuum pump engine	China best Electric Oil Free Screw Vacuum Pump for Electronics Industry   vacuum pump engine
editor by Dream 2024-05-16

China Custom Roots Water Ring Vacuum Unit Dry Screw Vacuum Pump Corrosion-Resistant Stainless Steel High Vacuum vacuum pump electric

Product Description

 

Product Description

JZJ2b series Roots water ring vacuum unit is an air extraction unit composed of ZJ and zjp roots vacuum pumps as injection and extraction pumps and 2BV and 2be water ring vacuum pumps as front stage pumps according to a certain pumping speed ratio. It can not only be used to extract general gases, but also gases containing water and a small amount of dust. Compared with the general mechanical vacuum pump, it is not afraid of oil pollution, water vapor and dust; Compared with the general water ring vacuum pump, it has advantages of the high limit vacuum and high pumping speed under high vacuum conditions. It is widely used in chemical, pharmaceutical, petroleum, electric power, food, light industry and other industries. It is used to pump places containing a large amount of water vapor, condensable gas and a small amount of CHINAMFG particles.

Our Advantages

JZJ2B series Roots water ring vacuum pump unit adopts 2BV and 2be water ring vacuum pumps with high efficiency and energy saving as the front stage pump and roots vacuum pump as the main pumping pump. Therefore, jzj2b series Roots water ring vacuum pump unit has the advantages of high efficiency, compact structure and high vacuum degree.

The working fluid of the front stage pump of jzj2b series Roots water ring vacuum pump unit mostly uses water, and can also use organic solvents (methanol, ethanol, xylene, acetone and other organic solvents) or other liquids. The front stage pump is used as a closed circulation system, which greatly reduces the pollution to the environment and greatly improves the recovery of organic solvents. The limit vacuum degree is determined by the saturated vapor pressure of the working fluid.

Product Parameters

Unit Type Pump model Pumping speed  (L/S) Maximum suction pressure (Pa) pressure limit Total Power (kW)
Main Pump prepump water ring oil pump unit
JZJ2B30-2 ZJ30 2BV2061 30 8000     2.25
JZJ2B30-1 ZJ30 2BV5110 30 12000     4.75
JZJ2B70-2 ZJ70 2BV5110 70 6000     5.1
JZJ2B70-1 ZJ70 2BV5111 70 12000     6.6
JZJ2B150-2A ZJP150 2BV5111 150 6000     7.7
JZJ2B150-2B ZJP150 2BV5121 150 8000     9.7
JZJ2B150-1 ZJP150 2BV5131 150 10000     13.2
JZJ2B300-2A ZJP300 2BV5131 300 4000     15
JZJ2B300-2B ZJP300 2BV5161 300 5000 267 80 19
JZJ2B300-1 ZJP300 2BE1 202 300 10000     26
JZJ2B600-2A ZJP600 2BE1 202 600 4000     27.5
JZJ2B600-2B ZJP600 2BE1 203 600 5000     42.5
JZJ2B600-1 ZJP600 2BE1 252 600 12000     50.5
JZJ2B1200-2A ZJP1200 2BE1 252 1200 2500     56
JZJ2B1200-2B ZJP1200 2BE1 253 1200 4000     86
JZJ2B1200-1 ZJP1200 2BE1 303 1200 8000     121
JZJ2B2500-2 ZJP2500 2BE1 303 2500 3000     132
JZJ2B70-2.1 ZJ70 ZJ30/2BV5110 70 6000     5.85
JZJ2B150-2.1 ZJP150 ZJ70/2BV5111 150 6000 25 0.8 8.8
JZJ2B 150-4.1 ZJP150 ZJ30/2BV5110 150 3000     6.95

 

Unit Type pump model pumping speed (L/S) maximum suction pressure (Pa) pressure limit total power (kW)
main pump prepump water ring unit oil pump unit
JZJ2B300-2.1 ZJP300 ZJP150/2BV5131 300 5000     17.2
JZJ2B300-2.2 ZJP300 ZJP150/2BV5121 300 4000     13.7
JZJ2B300-4.1 ZJP300 ZJ70/2BV5111 300 2000     10.6
JZJ2B600-4.1 ZJP600 ZJP150/2BV5131 600 1500     18.7
JZJ2B600-2.2 ZJP600 ZJP300/2BV5161 600 2000 25 0.8 24.5
JZJ2B1200-4.2 ZJP1200 ZJP300/2BV5161 1200 1000 30
JZJ2B1200-4.1 ZJP1200 ZJP1200/2BE1 202 1200 1200     37
JZJ2B 1200-2.2 ZJP1200 ZJP600/2BE1 203 1200 2500     53.5
JZJ2B1200-2.1 ZJP1200 ZJP600/2BE1 252 1200 3000     61.5
JZJ2B2500-4.1 ZJP2500 ZJP600/2BE1 252 2500 1000     72.5
JZJ2B70-2.1.1 ZJ70 ZJ30/ZJ30/2BV5110 70 6000     6.6
JZJ2B150-2.2.1 ZJP150 ZJ70/ZJ30/2BV5110 150 3000     8.05
JZJ2B300-2.2.1 ZJP300 ZJ150/ZJ70/2BV5111 300 3000     12.8
JZJ2B300-4.2.1 ZJP300 ZJ70/ZJ30/2BV5110 300 1200 0.5 0.05 9.85
JZJ2B600-2.2.1 ZJP600 ZJP300/ZJP150/2BV5131 600 2500 22.7
JZJ2B600-4.2.1 ZJP600 ZJP150/ZJ70/2BV5111 600 1200     14.3
JZJ2B1200-4.2.1 ZJP1200 ZJP300/ZJP150/2BV5131 1200 1000     28.2
JZJ2B2500-4.2.1 ZJ2500 ZJP600/ZJP300/2BE1 202 2500 1000     53.5

Detailed Photos

Vacuum pump is used in the field of chemical plantVacuum pumps are used in oiling machines

General Manager Speech

Deeply cultivate the vacuum technology, and research,develop and manufacture the vacuum equipment to provide the best solution in the vacuum field and make the vacuum application easier.

Company Profile

ZheJiang Kaien Vacuum Technology Co., Ltd. is a high-tech enterprise integrating R & D, production and operation of vacuum equipment. The company has strong technical force, excellent equipment and considerate after-sales service. The product manufacturing process is managed in strict accordance with IS09001 quality system. It mainly produces and sells screw vacuum pump, roots pump, claw vacuum pump, runoff vacuum pump, scroll pump, water ring vacuum pump, vacuum unit and other vacuum systems.

New plant plHangZhou

The company’s products have been for a number of food, medicine, refrigeration, drying plants and a number of transformer related equipment manufacturers for vacuum equipment. The products are widely used in vacuum drying and dehydration, kerosene vapor phase drying, vacuum impregnation, vacuum metallurgy, vacuum coating, vacuum evaporation, vacuum concentration, oil and gas recovery, etc.

High precision machining equipment

The company cooperates with many scientific research institutions and universities, such as ZheJiang University, China University of petroleum, ZheJiang Institute of mechanical design, etc.with colleges and universities to research and develop core technologies, and owns dozens of independent intellectual property patents.Our technology is leading, the product quality is stable, the product has a good reputation in China’s domestic market, is sold all over the country, and is exported to Europe, America, Africa, the Middle East and Southeast Asia,We adhering to the basic tenet of quality, reputation and service, the company takes leading-edge technology of vacuum pump as its own responsibility, and wholeheartedly serves customers of vacuum equipment application in various industries with rigorous working attitude and professional working style.

Product quality wins consumer cooperationIn shipmentISO 9001Certificate of hi-tech Enterprise

Welcome to send your needs, we will provide you with the best service,

provide the greatest help!!!

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Lifetime Paid Service
Warranty: One Year
Oil or Not: Oil Free
Structure: Roots Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Customization:
Available

|

screw vane pump

Are there environmentally friendly options for screw vacuum pumps?

Yes, there are environmentally friendly options available for screw vacuum pumps. Here’s a detailed explanation of the eco-friendly features and considerations associated with screw vacuum pumps:

1. Oil-Free Operation:

One of the key environmentally friendly features of screw vacuum pumps is their ability to operate without the use of oil. Traditional vacuum pumps, such as rotary vane pumps or liquid ring pumps, often require oil for lubrication and sealing. However, oil-free screw vacuum pumps eliminate the need for oil, resulting in cleaner and more environmentally friendly operation. Oil-free pumps can be particularly beneficial in applications where the pumped gases come into direct contact with the process or need to remain free from oil contamination.

2. Reduced Emissions:

Screw vacuum pumps contribute to reduced emissions compared to certain other types of pumps. By eliminating oil from the operation, there is no risk of oil carryover or vapor emissions that could adversely affect the environment. This is especially important in applications where the pumped gases contain volatile compounds, as oil-free screw vacuum pumps help prevent the release of harmful substances into the atmosphere. Additionally, screw vacuum pumps with built-in gas and vapor ballast options can further reduce emissions by facilitating the extraction of condensable vapors and preventing their release into the environment.

3. Energy Efficiency:

Energy efficiency is a crucial factor in environmentally friendly operation. Screw vacuum pumps are known for their high efficiency, which translates into reduced energy consumption. By minimizing power requirements, energy-efficient screw vacuum pumps help conserve energy and lower greenhouse gas emissions. Choosing pumps with advanced control systems, variable speed drives, or frequency converters can further enhance energy efficiency by allowing precise control and optimization of pump performance based on demand.

4. Noise Reduction:

Screw vacuum pumps often have quieter operation compared to certain other types of pumps. The design of screw pumps, with balanced rotors and reduced internal clearances, helps minimize noise and vibration. Reduced noise levels not only contribute to a more comfortable and quieter working environment but also have positive environmental implications by minimizing noise pollution in surrounding areas.

5. Long Service Life and Durability:

Screw vacuum pumps are typically built with durable materials and have a robust design, resulting in a long service life. Prolonged equipment lifespan reduces the need for frequent replacements, minimizing waste generation and the environmental impact of manufacturing new pumps. Additionally, the durability of screw vacuum pumps translates into fewer maintenance requirements and less material consumption over time.

6. Waste Management:

When it comes to waste management, screw vacuum pumps offer advantages such as reduced oil disposal requirements. Unlike oil-sealed pumps that require regular oil changes and proper disposal of used oil, oil-free screw vacuum pumps eliminate this waste stream. This simplifies waste management processes and reduces the potential environmental hazards associated with oil handling and disposal.

7. Compliance with Environmental Regulations:

Many screw vacuum pump manufacturers prioritize environmental responsibility and design their products to comply with relevant environmental regulations and standards. These may include requirements for energy efficiency, emissions control, noise levels, and material restrictions. By choosing pumps from reputable manufacturers that prioritize environmental considerations, users can ensure the equipment meets or exceeds the necessary environmental compliance requirements.

In summary, environmentally friendly options for screw vacuum pumps include oil-free operation, reduced emissions, energy efficiency, noise reduction, long service life and durability, waste management advantages, and compliance with environmental regulations. By opting for these eco-friendly features, industries can minimize their environmental footprint and contribute to sustainable practices.

screw vane pump

Can screw vacuum pumps be used for vacuum packaging and sealing processes?

Yes, screw vacuum pumps can be used for vacuum packaging and sealing processes. Screw vacuum pumps offer several advantages that make them suitable for these applications. Here’s a detailed explanation:

1. Efficient Evacuation:

Screw vacuum pumps are known for their high pumping speed, which allows them to quickly evacuate the packaging chamber. By removing air and other gases from the packaging environment, screw vacuum pumps create the necessary vacuum conditions for packaging and sealing processes.

2. Consistent Vacuum Levels:

Screw vacuum pumps are capable of maintaining consistent vacuum levels throughout the packaging and sealing process. This is important to ensure reliable and uniform packaging results. The stable vacuum levels achieved by screw vacuum pumps help preserve product quality, extend shelf life, and prevent spoilage or degradation of packaged goods.

3. Control and Automation:

Screw vacuum pumps can be easily integrated into packaging and sealing systems, allowing for precise control and automation of the vacuum process. They can be equipped with sensors, controllers, and programmable logic controllers (PLCs) to monitor and adjust the vacuum levels, packaging parameters, and sealing operations. This enables efficient and repeatable packaging processes.

4. Versatility:

Screw vacuum pumps are versatile and can handle a wide range of packaging materials, including flexible pouches, bags, trays, and rigid containers. They can accommodate different sizes and shapes of packaging, making them suitable for various industries such as food and beverage, pharmaceuticals, electronics, and consumer goods.

5. Oil-Free Operation:

Many screw vacuum pumps are designed to operate without the use of lubricating oil or fluids. This oil-free operation eliminates the risk of oil contamination in the packaging process, making them particularly suitable for applications where cleanliness and hygiene are crucial, such as in the food industry or medical packaging.

6. Reliability and Durability:

Screw vacuum pumps are known for their robust construction and reliable performance. They are designed to handle continuous operation and can withstand the demanding conditions of packaging and sealing processes, including frequent start-stop cycles and exposure to moisture, dust, or other contaminants.

7. Cost-Effectiveness:

Using screw vacuum pumps for vacuum packaging and sealing processes can be cost-effective in the long run. They offer energy-efficient operation, low maintenance requirements, and long service life, resulting in reduced operating costs and improved productivity.

In summary, screw vacuum pumps are well-suited for vacuum packaging and sealing processes. Their efficient evacuation capabilities, ability to maintain consistent vacuum levels, control and automation features, versatility, oil-free operation, reliability, and cost-effectiveness make them a valuable choice for a wide range of industries that require vacuum packaging and sealing of products.

screw vane pump

Can screw vacuum pumps handle both dry and wet processes?

Yes, screw vacuum pumps are capable of handling both dry and wet processes, making them versatile for a wide range of applications. The ability to handle both types of processes depends on the specific design and configuration of the screw vacuum pump, as well as any additional features or accessories that may be incorporated. Here’s a detailed explanation:

Dry Processes:

In dry processes, the screw vacuum pump operates without the presence of liquid or moisture. Dry screw vacuum pumps rely on tight clearances between the rotors (screws) and the pump housing to create an effective seal. This seal prevents gas or vapor from leaking back into the inlet or escaping to the atmosphere. The absence of liquid or moisture in the process stream helps maintain the integrity of the pump’s sealing mechanism and ensures reliable operation. Dry screw vacuum pumps are commonly used in applications where the process gas or vapor is predominantly dry and free from liquid carryover or condensable vapors.

Wet Processes:

In wet processes, the screw vacuum pump encounters liquids or moisture along with gas or vapor. These liquids can be in the form of condensable vapors, liquid carryover, or entrained liquid droplets. To handle wet processes, screw vacuum pumps may incorporate additional features or accessories to prevent damage, maintain performance, and ensure reliable operation. Some common methods used to handle wet processes include:

  • Liquid Seals: Certain screw vacuum pump designs utilize a liquid sealant to create a barrier between the process gas or vapor and the pump’s internal components. The liquid sealant helps prevent gas leakage, provides lubrication, and assists in sealing the clearances between the rotors and housing. This feature enables the pump to handle wet processes effectively by containing the liquid and maintaining proper sealing.
  • Separators and Filters: Screw vacuum pumps can be equipped with separators and filters to separate liquid droplets or solid particles from the gas or vapor stream. These components help protect the pump from potential damage caused by liquid or solid contamination and ensure the efficient operation of the pump.
  • Specific Design Considerations: Screw vacuum pump manufacturers may incorporate design modifications to enhance the pump’s ability to handle wet processes. This can include optimized clearances, corrosion-resistant materials, and specialized coatings or treatments to protect against liquid or moisture exposure.

It’s important to note that the specific capabilities of a screw vacuum pump in handling wet processes may vary between different models and manufacturers. Therefore, when selecting a screw vacuum pump for a wet process application, it is advisable to consult the manufacturer’s specifications, recommendations, and any additional guidance provided to ensure the pump is suitable for the intended process conditions.

In summary, screw vacuum pumps can handle both dry and wet processes, although the specific design and features of the pump may need to be considered for optimal performance in wet applications. Dry screw vacuum pumps are suitable for predominantly dry processes, while wet processes may require the use of liquid seals, separators, filters, or specialized design considerations to handle the presence of liquids or moisture effectively.

China Custom Roots Water Ring Vacuum Unit Dry Screw Vacuum Pump Corrosion-Resistant Stainless Steel High Vacuum   vacuum pump electricChina Custom Roots Water Ring Vacuum Unit Dry Screw Vacuum Pump Corrosion-Resistant Stainless Steel High Vacuum   vacuum pump electric
editor by Dream 2024-05-15

China manufacturer Liquid Ring Vacuum Pump for Plate Production Industry in China vacuum pump electric

Product Description

COMPANY SHOW:
20 Years
   ZiBo ZhuoXin Pump Industry co,.Ltd is located in a century industrial city known as the Pump Capital of China—HangZhou city, ZheJiang Province.  Has over 20 years’ experience of manufacturing vacuum pumps and 10+ years’ experience of exporting.
Various products
   We can suppply all type of vacuum pumps and spare parts in China, 2BV/2BEA/2BEC/SK/2SK/JZJ2B/ etc, and other industrial machine;
24 Hours
   Please do not hestiate to contact us if have any urgent matters,each of your inquiries will be taken into account and get our response within 24 hours.

PRODUCT MAIN FEATURE:
2BVC series water ring vacuum pumps and compressor is mainly used for sucking gases and water vapor .The ultimate suction pressure can reach 33mbar (abs) (i.e. 97 degree). When the liquid ring vacuum pumps work under the condition near the limited vacuum for a long time, it is necessary to connect with the cavitation resistant pipe in order to get rid of the screaming and protect the pump.
We are offering 2bvc series liquid ring vacuum pumps.

MAIN APPLICATION AREAS:

  • Vacuum filtering – Chemical filtering factories, chemical processing factories, iron ore factory, mining, phosphorite, paper making, poultry processing, coal-selecting factories.
  • Vacuum distillation – milk factory, foodstuff processing, chemical industry, the paper plasma factory.
  • Vacuum disinfection – hospital, infirmary, the laboratory.
  • Molding – Plastic, the polyethylene, rubber, tire manufacture etc.
  • Rebirth the compressed air – the paper plasma, iron and steel, automobile, glasses, chemical industry.

 

Product model Maximum air volume Limit Vacuum Degree
mbar(MPa)
Motor power
kW
Explosion-proof grade of motor Motor Protection Level Pump speed
r.p.m
Working fluid flow rate
L/min
noise
dB(A)
Weight
kg
m3/min m3/h
2BVC2 060 0.45 27 33mbar
(-0.098MPa)
0.81 No explosion proof IP54 2840 2 62 31
2BVC2 061 0.87 52 1.45 2840 2 65 35
2BVC2 070 1.33 80 2.35 2860 2.5 66 56
2BVC2 071 1.83 110 3.85 2880 4.2 72 65
2BVC2 060-Ex 0.45 27 1.1 IP55 2840 2 62 39
2BVC2 061-Ex 0.86 52 1.5 2840 2 65 45
2BVC2 070-Ex 1.33 80 3 2860 2.5 66 66
2BVC2 071-Ex 1.83 110 4 2880 4.2 72 77
2BVC5 110 2.75 165 4 No explosion proof IP54 1440 6.7 63 103
2BVC5 111 3.83 230 5.5 1440 8.3 68 117
2BVC5 121 4.67 280 7.5 1440 10 69 149
2BVC5 131 6.67 400 11 1460 15 73 205
2BVC5 161 8.33 500 15 970 20 74 331
2BVC6 110-EX 2.75 165 4 dIIBT4 IP55 1440 6.7 63 153
2BVC6 111-EX 3.83 230 5.5 1440 8.3 68 208
2BVC6 121-EX 4.66 280 7.5 1440 10 69 240
2BVC6 131-EX 6.66 400 11 1460 15 73 320
2BVC6 161-EX 8.33 500 15 970 20 74 446

2BV series of vacuum pumps adopt the advance international technology with the close-coupled design. With the advantages of high reliable performance, easy maintenance, lower noise, high efficiency and energy saving, this series of pumps are widely applied in fields of chemical industry, papermaking, and metallurgy industry and so on.
Due to its competitive price and higher performance, our pump is best choice for CHINAMFG and some italy pump replacement.

(Fig1: 2BV2 Installation dimension)

FAQ

Q:What is your MOQ?
A: One set;

Q:What are the causes of no flow or insufficient flow of centrifugal pump?
A: There is air in the suction pipe or pump, which needs to be discharged. Air leakage is found in the suction pipeline, and the leakage is repaired. If the valve of suction line or discharge line is closed, relevant valve shall be opened. If the suction height is too high, recalculate the installation height. The suction line is too small or blocked.

Q:How to resist cavitation in centrifugal pump?
A: Improve the structure design from the suction to the impeller of the centrifugal pump;Adopt double stage suction impeller and use anti-cavitation material;

Q:What is the function of rubber ball in water ring vacuum pump?
A: Rubber ball in water ring vacuum pump, the correct name is called rubber ball valve. Its role is to eliminate the pump equipment in the operation process of the phenomenon of over compression or insufficient compression.

Q:How long is warranty?
A:One year formain construction warranty.

Q:How can i pay for my items? What is the payment you can provide?
A:Usually by T/T, 30%-50% deposit payment once PI/Contract confirmed, then the remaining balance will be paid after inspection and before shipment via T/T or L/C;

Welcome client from home and abroad to contact us for future cooperation.

Detail size drawing and install drawing please contact our sales in charge to get;

Key:nash/simense/refurish/vacuum pumps/LRVP/ZheJiang HangZhou CHINAMFG pump/  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Oil or Not: Oil Free
Structure: Reciprocating Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

vacuum pump

How Do You Maintain and Troubleshoot Vacuum Pumps?

Maintaining and troubleshooting vacuum pumps is essential to ensure their optimal performance and longevity. Here’s a detailed explanation:

Maintenance of Vacuum Pumps:

1. Regular Inspection: Perform regular visual inspections of the pump to check for any signs of damage, leaks, or abnormal wear. Inspect the motor, belts, couplings, and other components for proper alignment and condition.

2. Lubrication: Follow the manufacturer’s guidelines for lubrication. Some vacuum pumps require regular oil changes or lubrication of moving parts. Ensure that the correct type and amount of lubricant are used.

3. Oil Level Check: Monitor the oil level in oil-sealed pumps and maintain it within the recommended range. Add or replace oil as necessary, following the manufacturer’s instructions.

4. Filter Maintenance: Clean or replace filters regularly to prevent clogging and ensure proper airflow. Clogged filters can impair pump performance and increase energy consumption.

5. Cooling System: If the vacuum pump has a cooling system, inspect it regularly for cleanliness and proper functioning. Clean or replace cooling components as needed to prevent overheating.

6. Seals and Gaskets: Check the seals and gaskets for signs of wear or leakage. Replace any damaged or worn seals promptly to maintain airtightness.

7. Valve Maintenance: If the vacuum pump includes valves, inspect and clean them regularly to ensure proper operation and prevent blockages.

8. Vibration and Noise: Monitor the pump for excessive vibration or unusual noise, which may indicate misalignment, worn bearings, or other mechanical issues. Address these issues promptly to prevent further damage.

Troubleshooting Vacuum Pump Problems:

1. Insufficient Vacuum Level: If the pump is not achieving the desired vacuum level, check for leaks in the system, improper sealing, or worn-out seals. Inspect valves, connections, and seals for leaks and repair or replace as needed.

2. Poor Performance: If the pump is not providing adequate performance, check for clogged filters, insufficient lubrication, or worn-out components. Clean or replace filters, ensure proper lubrication, and replace worn parts as necessary.

3. Overheating: If the pump is overheating, check the cooling system for blockages or insufficient airflow. Clean or replace cooling components and ensure proper ventilation around the pump.

4. Excessive Noise or Vibration: Excessive noise or vibration may indicate misalignment, worn bearings, or other mechanical issues. Inspect and repair or replace damaged or worn parts. Ensure proper alignment and balance of rotating components.

5. Motor Issues: If the pump motor fails to start or operates erratically, check the power supply, electrical connections, and motor components. Test the motor using appropriate electrical testing equipment and consult an electrician or motor specialist if necessary.

6. Excessive Oil Consumption: If the pump is consuming oil at a high rate, check for leaks or other issues that may be causing oil loss. Inspect seals, gaskets, and connections for leaks and repair as needed.

7. Abnormal Odors: Unusual odors, such as a burning smell, may indicate overheating or other mechanical problems. Address the issue promptly and consult a technician if necessary.

8. Manufacturer Guidelines: Always refer to the manufacturer’s guidelines and recommendations for maintenance and troubleshooting specific to your vacuum pump model. Follow the prescribed maintenance schedule and seek professional assistance when needed.

By following proper maintenance procedures and promptly addressing any troubleshooting issues, you can ensure the reliable operation and longevity of your vacuum pump.

vacuum pump

Can Vacuum Pumps Be Used for Soil and Groundwater Remediation?

Vacuum pumps are indeed widely used for soil and groundwater remediation. Here’s a detailed explanation:

Soil and groundwater remediation refers to the process of removing contaminants from the soil and groundwater to restore environmental quality and protect human health. Vacuum pumps play a crucial role in various remediation techniques by facilitating the extraction and treatment of contaminated media. Some of the common applications of vacuum pumps in soil and groundwater remediation include:

1. Soil Vapor Extraction (SVE): Soil vapor extraction is a widely used remediation technique for volatile contaminants present in the subsurface. It involves the extraction of vapors from the soil by applying a vacuum to the subsurface through wells or trenches. Vacuum pumps create a pressure gradient that induces the movement of vapors towards the extraction points. The extracted vapors are then treated to remove or destroy the contaminants. Vacuum pumps play a vital role in SVE by maintaining the necessary negative pressure to enhance the volatilization and extraction of contaminants from the soil.

2. Dual-Phase Extraction (DPE): Dual-phase extraction is a remediation method used for the simultaneous extraction of both liquids (such as groundwater) and vapors (such as volatile organic compounds) from the subsurface. Vacuum pumps are utilized to create a vacuum in extraction wells or points, drawing out both the liquid and vapor phases. The extracted groundwater and vapors are then separated and treated accordingly. Vacuum pumps are essential in DPE systems for efficient and controlled extraction of both liquid and vapor-phase contaminants.

3. Groundwater Pumping and Treatment: Vacuum pumps are also employed in groundwater remediation through the process of pumping and treatment. They are used to extract contaminated groundwater from wells or recovery trenches. By creating a vacuum or negative pressure, vacuum pumps facilitate the flow of groundwater towards the extraction points. The extracted groundwater is then treated to remove or neutralize the contaminants before being discharged or re-injected into the ground. Vacuum pumps play a critical role in maintaining the required flow rates and hydraulic gradients for effective groundwater extraction and treatment.

4. Air Sparging: Air sparging is a remediation technique used to treat groundwater and soil contaminated with volatile organic compounds (VOCs). It involves the injection of air or oxygen into the subsurface to enhance the volatilization of contaminants. Vacuum pumps are utilized in air sparging systems to create a vacuum or negative pressure zone in wells or points surrounding the contaminated area. This induces the movement of air and oxygen through the soil, facilitating the release and volatilization of VOCs. Vacuum pumps are essential in air sparging by maintaining the necessary negative pressure gradient for effective contaminant removal.

5. Vacuum-Enhanced Recovery: Vacuum-enhanced recovery, also known as vacuum-enhanced extraction, is a remediation technique used to recover non-aqueous phase liquids (NAPLs) or dense non-aqueous phase liquids (DNAPLs) from the subsurface. Vacuum pumps are employed to create a vacuum or negative pressure gradient in recovery wells or trenches. This encourages the movement and extraction of NAPLs or DNAPLs towards the recovery points. Vacuum pumps facilitate the efficient recovery of these dense contaminants, which may not be easily recoverable using traditional pumping methods.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, liquid ring pumps, or air-cooled pumps, may be used in soil and groundwater remediation depending on the specific requirements of the remediation technique and the nature of the contaminants.

In summary, vacuum pumps play a vital role in various soil and groundwater remediation techniques, including soil vapor extraction, dual-phase extraction, groundwater pumping and treatment, air sparging, and vacuum-enhanced recovery. By creating and maintaining the necessary pressure differentials, vacuum pumps enable the efficient extraction, treatment, and removal of contaminants, contributing to the restoration of soil and groundwater quality.

vacuum pump

How Are Vacuum Pumps Different from Air Compressors?

Vacuum pumps and air compressors are both mechanical devices used to manipulate air and gas, but they serve opposite purposes. Here’s a detailed explanation of their differences:

1. Function:

– Vacuum Pumps: Vacuum pumps are designed to remove or reduce the pressure within a closed system, creating a vacuum or low-pressure environment. They extract air or gas from a chamber, creating suction or negative pressure.

– Air Compressors: Air compressors, on the other hand, are used to increase the pressure of air or gas. They take in ambient air or gas and compress it, resulting in higher pressure and a compacted volume of air or gas.

2. Pressure Range:

– Vacuum Pumps: Vacuum pumps are capable of generating pressures below atmospheric pressure or absolute zero pressure. The pressure range typically extends into the negative range, expressed in units such as torr or pascal.

– Air Compressors: Air compressors, on the contrary, operate in the positive pressure range. They increase the pressure above atmospheric pressure, typically measured in units like pounds per square inch (psi) or bar.

3. Applications:

– Vacuum Pumps: Vacuum pumps have various applications where the creation of a vacuum or low-pressure environment is required. They are used in processes such as vacuum distillation, vacuum drying, vacuum packaging, and vacuum filtration. They are also essential in scientific research, semiconductor manufacturing, medical suction devices, and many other industries.

– Air Compressors: Air compressors find applications where compressed air or gas at high pressure is needed. They are used in pneumatic tools, manufacturing processes, air conditioning systems, power generation, and inflating tires. Compressed air is versatile and can be employed in numerous industrial and commercial applications.

4. Design and Mechanism:

– Vacuum Pumps: Vacuum pumps are designed to create a vacuum by removing air or gas from a closed system. They may use mechanisms such as positive displacement, entrapment, or momentum transfer to achieve the desired vacuum level. Examples of vacuum pump types include rotary vane pumps, diaphragm pumps, and diffusion pumps.

– Air Compressors: Air compressors are engineered to compress air or gas, increasing its pressure and decreasing its volume. They use mechanisms like reciprocating pistons, rotary screws, or centrifugal force to compress the air or gas. Common types of air compressors include reciprocating compressors, rotary screw compressors, and centrifugal compressors.

5. Direction of Air/Gas Flow:

– Vacuum Pumps: Vacuum pumps draw air or gas into the pump and then expel it from the system, creating a vacuum within the chamber or system being evacuated.

– Air Compressors: Air compressors take in ambient air or gas and compress it, increasing its pressure and storing it in a tank or delivering it directly to the desired application.

While vacuum pumps and air compressors have different functions and operate under distinct pressure ranges, they are both vital in various industries and applications. Vacuum pumps create and maintain a vacuum or low-pressure environment, while air compressors compress air or gas to higher pressures for different uses and processes.

China manufacturer Liquid Ring Vacuum Pump for Plate Production Industry in China   vacuum pump electricChina manufacturer Liquid Ring Vacuum Pump for Plate Production Industry in China   vacuum pump electric
editor by Dream 2024-05-14

China Best Sales Muli Stage Rotary Vane Vacuum Pump for Dental Treatment vacuum pump electric

Product Description

DS Series Dry Screw Vacuum Pump 

Features

1.Exhaust Path Is Short, Reduce The Deposition Of Reactants.
Comparing with other types of dry vacuum pump,DENAIR screw vacuum pump has the shortest gas path in the vacuum pump and that could reduce the contamination of process gas. Screw rotors can play as a powder transmission mechanism,we runs well even there has lots of contamination inside the pump.

2.The Optimal Linear Sealing, The Pump Performance.
Patented rotor profile can provide rotor excellent sealing effects thus a larger clearance is allowable in between.Pump rotor wesring and rotor jam by the process contamination can be reduced by larger allowable clearcance.

3.Simple Structure, Low Fault Rate And Easy Maintenance
Screw type vacuum is composed by a pair of screw rotor and isolation plates are required in different between rotors and isolation plates can also be avoided.Overhaul CHINAMFG dry pump is much easier than other type of dry pump,so the erpair time is shorter and the cost is saver.

4.Microcomputer Operation, Remote Monitoring, Considerate Protection
Microprocessor controller provides lots of pump parameters for running status monitoring.Pump can be easily operated and monitored by the operation panel.Remote control software can help the customer monitor the pump running status remotely.

DS Vacuum Pump Speed Curve

Advantages

1.Special cooling liquid cooling, to avoid the cooling water may cause corrosion to the hull. 

2.Mobile operation interface, convenient operation; Display and the actual work of vacuum pump and can be selected to both languages, according to the real close to the customer.

3.Catch the power connector, safe and convenient.

4.The nitrogen gas heater, make the vacuum pump is more suitable for CVD, PECVD and other semiconductor technique process.
5.The control signals and communication signal interface, remote monitoring was carried out on the vacuum. 

Application

1.The health care industry.

2.Lighting industry.

3.A variety of analytical instruments.

4.Electronics, semiconductor industry. 

5.The power industry.

6.Refrigeration industry.

Technical Prameters

Type Unit DS180 DS250 DS360 DS540 DS720
50Hz 60Hz 50Hz 60Hz 50Hz 60Hz 50Hz 60Hz 50Hz 60Hz
Pumping speed m3/hr 180 216 250 3, China
And our factory is located in No.386,YangzhuangBang Street,Pingxing Rd.,Xindai Town,HangZhou,ZHangZhoug Province, China

Q3: Warranty terms of your machine? 
A3: Two years warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines? 
A4: Yes, of course.

Q5: How long will you take to arrange production? 
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days

Q6: Can you accept OEM orders? 
A6: Yes, with professional design team, OEM orders are highly welcome.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Vacuum
Work Function: Pre-Suction Pump
Working Conditions: Dry
Customization:
Available

|

vacuum pump

What Are the Advantages of Using Oil-Sealed Vacuum Pumps?

Oil-sealed vacuum pumps offer several advantages in various applications. Here’s a detailed explanation:

1. High Vacuum Performance: Oil-sealed vacuum pumps are known for their ability to achieve high levels of vacuum. They can create and maintain deep vacuum levels, making them suitable for applications that require a low-pressure environment. The use of oil as a sealing and lubricating medium helps in achieving efficient vacuum performance.

2. Wide Operating Range: Oil-sealed vacuum pumps have a wide operating range, allowing them to handle a broad spectrum of vacuum levels. They can operate effectively in both low-pressure and high-vacuum conditions, making them versatile for different applications across various industries.

3. Efficient and Reliable Operation: These pumps are known for their reliability and consistent performance. The oil-sealed design provides effective sealing, preventing air leakage and maintaining a stable vacuum level. They are designed to operate continuously for extended periods without significant performance degradation, making them suitable for continuous industrial processes.

4. Contamination Handling: Oil-sealed vacuum pumps are effective in handling certain types of contaminants that may be present in the process gases or air being evacuated. The oil acts as a barrier, trapping and absorbing certain particulates, moisture, and chemical vapors, preventing them from reaching the pump mechanism. This helps protect the pump internals from potential damage and contributes to the longevity of the pump.

5. Thermal Stability: The presence of oil in these pumps helps in dissipating heat generated during operation, contributing to their thermal stability. The oil absorbs and carries away heat, preventing excessive temperature rise within the pump. This thermal stability allows for consistent performance even during prolonged operation and helps protect the pump from overheating.

6. Noise Reduction: Oil-sealed vacuum pumps generally operate at lower noise levels compared to other types of vacuum pumps. The oil acts as a noise-damping medium, reducing the noise generated by the moving parts and the interaction of gases within the pump. This makes them suitable for applications where noise reduction is desired, such as laboratory environments or noise-sensitive industrial settings.

7. Versatility: Oil-sealed vacuum pumps are versatile and can handle a wide range of gases and vapors. They can effectively handle both condensable and non-condensable gases, making them suitable for diverse applications in industries such as chemical processing, pharmaceuticals, food processing, and research laboratories.

8. Cost-Effective: Oil-sealed vacuum pumps are often considered cost-effective options for many applications. They generally have a lower initial cost compared to some other types of high-vacuum pumps. Additionally, the maintenance and operating costs are relatively lower, making them an economical choice for industries that require reliable vacuum performance.

9. Simplicity and Ease of Maintenance: Oil-sealed vacuum pumps are relatively simple in design and easy to maintain. Routine maintenance typically involves monitoring oil levels, changing the oil periodically, and inspecting and replacing worn-out parts as necessary. The simplicity of maintenance procedures contributes to the overall cost-effectiveness and ease of operation.

10. Compatibility with Other Equipment: Oil-sealed vacuum pumps are compatible with various process equipment and systems. They can be easily integrated into existing setups or used in conjunction with other vacuum-related equipment, such as vacuum chambers, distillation systems, or industrial process equipment.

These advantages make oil-sealed vacuum pumps a popular choice in many industries where reliable, high-performance vacuum systems are required. However, it’s important to consider specific application requirements and consult with experts to determine the most suitable type of vacuum pump for a particular use case.

vacuum pump

Can Vacuum Pumps Be Used for Leak Detection?

Yes, vacuum pumps can be used for leak detection purposes. Here’s a detailed explanation:

Leak detection is a critical task in various industries, including manufacturing, automotive, aerospace, and HVAC. It involves identifying and locating leaks in a system or component that may result in the loss of fluids, gases, or pressure. Vacuum pumps can play a significant role in leak detection processes by creating a low-pressure environment and facilitating the detection of leaks through various methods.

Here are some ways in which vacuum pumps can be used for leak detection:

1. Vacuum Decay Method: The vacuum decay method is a common technique used for leak detection. It involves creating a vacuum in a sealed system or component using a vacuum pump and monitoring the pressure change over time. If there is a leak present, the pressure will gradually increase due to the ingress of air or gas. By measuring the rate of pressure rise, the location and size of the leak can be estimated. Vacuum pumps are used to evacuate the system and establish the initial vacuum required for the test.

2. Bubble Testing: Bubble testing is a simple and visual method for detecting leaks. In this method, the component or system being tested is pressurized with a gas, and then immersed in a liquid, typically soapy water. If there is a leak, the gas escaping from the component will form bubbles in the liquid, indicating the presence and location of the leak. Vacuum pumps can be used to create a pressure differential that forces gas out of the leak, making it easier to detect the bubbles.

3. Helium Leak Detection: Helium leak detection is a highly sensitive method used to locate extremely small leaks. Helium, being a small atom, can easily penetrate small openings and leaks. In this method, the system or component is pressurized with helium gas, and a vacuum pump is used to evacuate the surrounding area. A helium leak detector is then used to sniff or scan the area for the presence of helium, indicating the location of the leak. Vacuum pumps are essential for creating the low-pressure environment required for this method and ensuring accurate detection.

4. Pressure Change Testing: Vacuum pumps can also be used in pressure change testing for leak detection. This method involves pressurizing a system or component and then isolating it from the pressure source. The pressure is monitored over time, and any significant pressure drop indicates the presence of a leak. Vacuum pumps can be used to evacuate the system after pressurization, returning it to atmospheric pressure for comparison or retesting.

5. Mass Spectrometer Leak Detection: Mass spectrometer leak detection is a highly sensitive and precise method used to identify and quantify leaks. It involves introducing a tracer gas, usually helium, into the system or component being tested. A vacuum pump is used to evacuate the surrounding area, and a mass spectrometer is employed to analyze the gas samples for the presence of the tracer gas. This method allows for accurate detection and quantification of leaks down to very low levels. Vacuum pumps are crucial for creating the necessary vacuum conditions and ensuring reliable results.

In summary, vacuum pumps can be effectively used for leak detection purposes. They facilitate various leak detection methods such as vacuum decay, bubble testing, helium leak detection, pressure change testing, and mass spectrometer leak detection. Vacuum pumps create the required low-pressure environment, assist in evacuating the system or component being tested, and enable accurate and reliable leak detection. The choice of vacuum pump depends on the specific requirements of the leak detection method and the sensitivity needed for the application.

vacuum pump

Can Vacuum Pumps Be Used in Laboratories?

Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here’s a detailed explanation:

Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:

1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.

2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.

3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.

4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.

5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.

6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).

7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.

Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.

China Best Sales Muli Stage Rotary Vane Vacuum Pump for Dental Treatment   vacuum pump electricChina Best Sales Muli Stage Rotary Vane Vacuum Pump for Dental Treatment   vacuum pump electric
editor by Dream 2024-05-13

China Hot selling Oil Free Dry Screw CHINAMFG Electric Brake High Vacuum Pump vacuum pump diy

Product Description

Oil Free Dry Screw CHINAMFG Electric Brake High Vacuum Pump

Product Description

The LGB screw vacuum pump is an extraction equipment that uses a pair of screws to perform synchronous high-speed reverse rotation in the pump casing, generating suction and exhaust effects. Due to the certain gap between the screws, the pump operates smoothly without friction, with low noise, and no need for lubricating oil in the working chamber. Therefore, the dry screw pump can extract gas containing water vapor and a small amount of dust; Due to the maximum pressure of the LGB screw vacuum pump CHINAMFG 5PA, it can be widely used in various fields such as chemical industry, metallurgy, electronics, petroleum, aerospace, tools, papermaking, packaging, food, medicine, medical equipment, as well as information engineering, biotechnology, microelectronics, etc

Product Parameters

 

Model

LGB-70

LGB-100

LGB-200

LGB-300

Pumping speed(L/3)

70

100

200

300

Ultimate pressure(Pa)

5

5

5

5

rotational speed(rpm)

2900

2940

2940

2950

Connections of inlet  DN(mm)

50

80

100

125

Connections of outle  DN(mm)

45

65

65

80

Noise level dB(A)

≤80

≤80

≤80

≤80

temperature rise(°C)

≤40°C

≤40°C

≤40°C

≤40°C

Pumping size(mm)

1360X960X700

1650X847X933

1740X960X980

2100X1100X1030

Weight (with oil filling) kg

500

665

1571

1300

Motor Power(Kw)

7.5

15

18.5

37

Motor Voltage/motor base frequency(V/Hz)

380/50

380/50

380/50

380/50

Nominal Motor speed (rpm)

2900

2940

2940

2950

Nominal Motor current(A)

14.8

28.8

35.5

67.9

Type of protection(IP)

IP55

IP55

IP55

IP55

Detailed Photos

Choose the right materials and weld carefully

Surface texture, smooth lines, good quality visible

Performance stability and outstanding advantages

We can recommend the closest model according to your requirements

Long term use and high efficiency

Compact structure, low noise, and reliable use

Easy to disassemble and maintain

Can be selected according to process requirements

Materials and sealing methods for the overcurrent section of the pump

 

Company Profile

HangZhou Sifang Vacuum Equipment Co., Ltd. specializes in the production of vacuum furnaces, vacuum pumps, steel drums and other products.”Sifang” is the registered trademark of the company’s products.

our company is 1 professional vacuum equipment manufacturer in HangZhou, China. We specialize in vacuum pumps, furnaces, systems and components for diverse applications. We produce rotary vane vacuum pumps, water ring vacuum pumps, reciprocating vacuum pumps, roots vacuum pump units, vacuum heat treatment furnaces, vacuum aluminum brazing furnaces, high temperature brazing fur- naces, vacuum sintering furnaces, monocrystalline silicon furnaces and other products. All these vacuum equipment are widely used in aviation, aerospace, military, railway, automobile, machinery, mold, electronics, metallurgy, scientific research and other fields.

We have professional engineer support, high efficiency sales team and competitive price superiority, and attract customers from all over the world, we export to over 40 countries, including Europe, Poland, Serbia, Turkey, Russia, USA, Mexico, Brazil, India, Thailand, Middle east and South Africa.

After several years’ development, We have achieved great progress, we are equipped with the AutomaticCNCmachines and multi-func- tion testing machines. Our R&D department provide the strong tech- nical support and enable us to receive some 0 E M, O D M projects. We can produce at least 3000 sets vacuum equipment per year. With our innovative and energy-efficient vacuum equipment that is put to work in a multitude of manufacturing and process applica- tions, we also offer you a comprehensive suite of CHINAMFG ser- vices to complement our products.

FAQ

1.Q: Are you a factory or trading company?
A: We are a factory and we have professional team of workers,Designers and inspectors.

2.Q:Do you accept custom?
A:Of course.We have professional teams who make your designs,photos,imagines and OEM orders into real production.

3.Q:What’s your advantages?
A: Quick response to your enquiry,
High quality control,
Reasonable price,
Timely delivery,
Excellent after-sales service,
OEM/ODM are welcome

4.Q:What’s your shipping terms?
A:If you need to ship by air,we can use DHL,UPS,FedEx,TNT or EMS.If you need to ship by sea,we have many good forwarders to work with,they can provide the best price for you.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 1 Year
Oil or Not: Oil
Structure: Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: Vacuum
Customization:
Available

|

screw vane pump

What are the cost considerations when purchasing and maintaining screw vacuum pumps?

When purchasing and maintaining screw vacuum pumps, several cost considerations come into play. Here’s a detailed explanation of the key factors to consider:

1. Initial Purchase Cost:

The initial purchase cost of a screw vacuum pump is an important consideration. The cost can vary depending on factors such as the pump’s capacity, specifications, features, and the manufacturer. Generally, screw vacuum pumps tend to have a higher upfront cost compared to some other types of vacuum pumps. However, it’s essential to evaluate the long-term benefits and performance advantages offered by screw vacuum pumps to determine their overall value for the specific application.

2. Energy Consumption:

Energy consumption is a significant ongoing cost associated with operating screw vacuum pumps. While screw vacuum pumps are known for their high efficiency, it’s important to consider the power requirements and energy consumption of the specific pump model. Opting for energy-efficient screw vacuum pumps can result in long-term cost savings by reducing electricity bills and minimizing the environmental impact. Additionally, pumps equipped with advanced control systems or variable speed drives allow for better energy optimization and can further enhance cost-effectiveness.

3. Maintenance and Service:

Maintenance and service costs are important considerations throughout the lifecycle of a screw vacuum pump. Regular maintenance is necessary to ensure optimal performance, reliability, and longevity of the equipment. The specific maintenance requirements and associated costs can vary depending on the pump model and manufacturer. It’s crucial to follow the manufacturer’s recommended maintenance schedule and guidelines. Some maintenance tasks may include changing seals, replacing filters, inspecting and lubricating bearings, and monitoring performance parameters. Proper maintenance can prevent costly breakdowns, extend the pump’s service life, and minimize unexpected repair expenses.

4. Spare Parts and Consumables:

When budgeting for screw vacuum pumps, it’s important to consider the cost of spare parts and consumables. Over time, certain components of the pump may require replacement, such as seals, gaskets, filters, or lubricants. The availability and cost of these spare parts can vary depending on the pump model and manufacturer. It’s advisable to inquire about the availability, pricing, and expected lifespan of consumables when purchasing the pump and factor these costs into the overall budget.

5. Operational Downtime:

Operational downtime can have significant cost implications for any industrial process. When a screw vacuum pump requires maintenance, repair, or replacement, it may result in downtime, leading to production interruptions, decreased efficiency, and potential revenue loss. Therefore, it’s important to consider the reliability, serviceability, and availability of technical support when choosing a screw vacuum pump. Opting for reputable manufacturers with a track record of providing reliable products and responsive customer support can help minimize operational downtime and mitigate associated costs.

6. Lifecycle Cost Analysis:

When evaluating the cost considerations of screw vacuum pumps, it’s beneficial to conduct a lifecycle cost analysis. This analysis takes into account not only the initial purchase cost but also the long-term operational costs, maintenance expenses, energy consumption, and expected service life of the pump. By considering the total cost of ownership over the pump’s lifespan, including factors like efficiency, reliability, and maintenance requirements, it becomes easier to assess the cost-effectiveness of different pump options and make informed purchasing decisions.

7. Warranty and After-Sales Support:

Considering the warranty and after-sales support offered by the pump manufacturer is essential. A comprehensive warranty can provide cost protection against potential defects or premature failures. Additionally, reliable after-sales support, technical assistance, and readily available spare parts can contribute to minimizing downtime, reducing repair costs, and ensuring the long-term performance of the screw vacuum pump.

In summary, the cost considerations when purchasing and maintaining screw vacuum pumps include the initial purchase cost, energy consumption, maintenance and service expenses, spare parts and consumables, operational downtime, lifecycle cost analysis, and warranty and after-sales support. By carefully evaluating these factors and assessing the specific needs of the application, businesses can make informed decisions to optimize cost-effectiveness and achieve reliable vacuum pump performance.

screw vane pump

What are the maintenance and servicing requirements for screw vacuum pumps?

Screw vacuum pumps require regular maintenance and servicing to ensure optimal performance, reliability, and longevity. Here’s a detailed explanation of the typical maintenance and servicing requirements for screw vacuum pumps:

1. Regular Inspections:

Perform regular visual inspections of the screw vacuum pump to check for any signs of wear, damage, or leaks. Inspect the pump, motor, and associated components for loose connections, worn-out parts, or abnormal vibrations. Ensure that all safety features and interlocks are functioning correctly.

2. Lubrication:

If the screw vacuum pump is equipped with lubrication points, follow the manufacturer’s guidelines for lubrication intervals and the type of lubricant to use. Proper lubrication helps reduce friction, wear, and heat generation, ensuring smooth operation and extending the life of the pump.

3. Cleaning and Filtration:

Keep the screw vacuum pump and its surrounding area clean and free from debris, dust, or contaminants that can affect its performance. Regularly clean or replace air filters to prevent clogging and maintain proper airflow. Clean the pump’s exterior surfaces using suitable cleaning agents and methods recommended by the manufacturer.

4. Belt and Pulley Maintenance:

If the screw vacuum pump is belt-driven, inspect the condition of the belts and pulleys regularly. Check for any signs of wear, cracks, or belt tension issues. Adjust or replace belts as necessary to maintain proper tension and alignment, ensuring efficient power transmission.

5. Cooling System Maintenance:

If the screw vacuum pump is equipped with a cooling system, regularly check and maintain the cooling components. Clean or replace cooling fins, check coolant levels, and ensure proper circulation to prevent overheating and ensure optimal cooling efficiency.

6. Seal Inspection and Replacement:

Inspect the seals, gaskets, and O-rings of the screw vacuum pump regularly. Look for signs of wear, leaks, or degradation. Replace worn-out or damaged seals promptly to maintain proper sealing and prevent air leaks that can impact the pump’s performance.

7. Vibration and Noise Monitoring:

Monitor the vibration and noise levels during the operation of the screw vacuum pump. Excessive vibration or unusual noise can indicate a mechanical problem or misalignment. Take corrective measures if required to minimize vibration and noise, ensuring smooth and quiet operation.

8. Scheduled Maintenance:

Follow the manufacturer’s recommended maintenance schedule for the screw vacuum pump. This may include periodic servicing, such as changing of oil or fluids, inspection and replacement of internal components, and performance checks. Adhering to the scheduled maintenance helps prevent unexpected breakdowns and ensures the pump operates at its best.

9. Expert Servicing:

For complex maintenance or repairs, it is advisable to seek the assistance of qualified technicians or service professionals with experience in screw vacuum pumps. They have the expertise and knowledge to diagnose and resolve issues effectively, ensuring proper maintenance and servicing of the pump.

10. Training and Documentation:

Ensure that the personnel responsible for the screw vacuum pump’s maintenance and servicing are adequately trained on the proper procedures, safety guidelines, and best practices. Maintain comprehensive documentation, including service records, manuals, and relevant technical information for reference and future servicing needs.

In summary, regular inspections, lubrication, cleaning, filtration, belt and pulley maintenance, cooling system maintenance, seal inspection and replacement, vibration and noise monitoring, scheduled maintenance, expert servicing, training, and documentation are important aspects of maintaining and servicing screw vacuum pumps. By following these guidelines and the manufacturer’s recommendations, the pump can operate efficiently, minimize downtime, and have an extended service life.

screw vane pump

What are the typical applications of screw vacuum pumps in various industries?

Screw vacuum pumps find a wide range of applications across various industries due to their efficiency, reliability, and versatility. Here are some typical applications of screw vacuum pumps in different industries:

Chemical Processing:

  • Vacuum distillation and drying processes
  • Vacuum filtration and solvent recovery
  • Crystallization and evaporation systems
  • Chemical reactors and vacuum drying ovens

Pharmaceuticals:

  • Vacuum drying and freeze-drying of pharmaceutical products
  • Deaeration and degassing processes
  • Vacuum packaging and sealing
  • Purification and distillation of pharmaceutical compounds

Food and Beverage:

  • Deaeration and removal of dissolved gases in food and beverage products
  • Evaporation and concentration processes
  • Freeze drying and vacuum packaging
  • Vacuum cooling and drying of food products

Power Generation:

  • Steam condenser and turbine exhaust applications
  • Deaeration and vacuum systems in power plants
  • Vacuum distillation in the production of power plant chemicals
  • Transformer drying and impregnation

Electronics Manufacturing:

  • Vacuum drying and degassing of electronic components
  • Vacuum soldering and brazing processes
  • Thin film deposition and vacuum coating
  • Printed circuit board manufacturing

Wastewater Treatment:

  • Vacuum filtration and sludge dewatering
  • Vacuum degassing and deaeration of wastewater
  • Evaporation and concentration of wastewater streams

Environmental Applications:

  • Landfill gas recovery and treatment
  • Vacuum drying and deodorization in waste management
  • Vacuum systems for air pollution control

Other Industries:

  • Oil and gas industry for vapor recovery and gas processing
  • Automotive industry for vacuum metallurgy and component manufacturing
  • Textile industry for vacuum drying and deaeration of fabrics
  • Research and development laboratories for various scientific applications

These are just a few examples of the many applications of screw vacuum pumps in various industries. The versatility and reliability of screw vacuum pumps make them suitable for a wide range of vacuum-related processes, enabling enhanced productivity, improved product quality, and cost savings in diverse industrial settings.

China Hot selling Oil Free Dry Screw CHINAMFG Electric Brake High Vacuum Pump   vacuum pump diyChina Hot selling Oil Free Dry Screw CHINAMFG Electric Brake High Vacuum Pump   vacuum pump diy
editor by Dream 2024-05-13

China Good quality 6/12/24VDC Long Lifetime Electric DC Diaphragm Vacuum Pump vacuum pump ac system

Product Description

Micro Vacuum Pump

Remarks:
– We are high-end Micro DC pumps manufacturer. Can provide customized services
– If you are interested in our products, pls feel free to contact us

Our Micro Diaphragm Pumps are available with a choice of 4 different drive motors.

A-  Premium duty brush DC motor
lifetime 3,000hours,longer endurance lifetime than other normal DC membrane pump

B-  Economical brush DC motor
lifetime:1,500hours 

C-  Coreless Brushless DC Motor  
A brushless electronically commutated dc motor (electronics integrated in motor), the motor runs vibration and spark free, almost silently, is very dynamic and extremely durable, ideal life-time 15000 hours

D-  Coreless Brushless DC motor with outer controller
With all advantages of coreless brushless DC motor, ideal life-time 15000 hours, and outer controller can realize more control functions of PWM or 0 -5V speed adjustment, brake, ~ instant starting work

H- Brushless DC Motor
Long lifetime 10000hour

Product Specification

Model TM30A-A TM30A-B TM30A-C TM30A-D
Motor type

A–high performance

Brush motor

B–Brush motor C–Brushless  motor D–Brushless motor
Pump Assembly Rated Life 3000hour 1000hour 15000hour 15000hour
Gas flow 6L/min 4.5L/min 4.5L/min 4L/min
Rated Voltage 12V 6/12/24v 6/12/24v 6/12/24v
No-load Current 0.24A 0.4/0.24/0.15A
Media    Most gas
Max Pressure  120kpa
Max Vacuum -70kpa
Ambient Temperature 41 to 158 F(5 to 70C)
Pump size 75.5*30.4*54.6mm 75*31.2*57.5mm 79*31.2*57.5mm 79*31.2*57.5mm
Weight 200g 150g 250g 250g
Inlet&Outlet OD 4.8mm/ID 2.6mm,hose suggestion:ID 4.0mm
Materials

pump head Nylon, 

membrane EPDM , valve EPDM 

pump head Nylon, 

membrane EPDM / PTFE, valve EPDM / FPM

pump head Nylon, 

membrane EPDM / PTFE, valve EPDM / FPM

pump head Nylon, 

membrane EPDM / PTFE, valve EPDM / FPM

Wetted material options

1.Optional membrane materials:
CHINAMFG for normal air 
PTFE for corrosive air,like acid, alkali air, CHINAMFG etc.

2.Optional valve materials:
CHINAMFG for normal air 
FPM for corrosive air, like acid, alkali, ozone,etc.
 

Get more Technical data, Please Send message

CHINAMFG Diaphragm series gas pumps are the perfect combination of form and function. The use of a special diaphragm allows the pump to transfer both air and liquid efficiently. The compact lightweight unit offers optimum sizing for analytical equipment.

 

 ADVANTAGES

♦  High pneumatic performance
♦  Compact size/high power density
♦  Uncontaminated flow – no contamination of the media due to oil-free operation
♦  Maintenance-free
♦  Long product life     
♦  Low sound level
♦  Low power consumption 
♦  Can operate in any orientation
♦  Suction                               

 

The versatility of CHINAMFG pumps allows a wide field of applications to be covered. Over many years our pumps have proved themselves in the following areas:
1.Industrial pressure and vacuum applications
2.Portable Analytical Instruments
3.Medical Equipment
4.Air Quality Sampling Monitors
5.Respiration Monitors

Performance Curve

More About Products

 

Get more Technical data, Please Send message 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: RoHS, CE
Material: Pump Head Nylon, Membrane EPDM / PTFE, Valve EPDM
Power: Electric
Function: Electronic Type, Field Bus, Industrial Pressure and Vacuum Applications
Features: Oil-Free,Compact Size, Corrosionresistant, Mainten
More Features: High Efficiency, Can Be Mounted in Any Place
Customization:
Available

|

vacuum pump

What Is the Role of Vacuum Pumps in Semiconductor Manufacturing?

Vacuum pumps play a critical role in semiconductor manufacturing processes. Here’s a detailed explanation:

Semiconductor manufacturing involves the production of integrated circuits (ICs) and other semiconductor devices used in various electronic applications. Vacuum pumps are used extensively throughout the semiconductor manufacturing process to create and maintain the required vacuum conditions for specific manufacturing steps.

Here are some key roles of vacuum pumps in semiconductor manufacturing:

1. Deposition Processes: Vacuum pumps are used in deposition processes such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). These processes involve depositing thin films of materials onto semiconductor wafers to create various layers and patterns. Vacuum pumps help create a low-pressure environment necessary for precise control of the deposition process, ensuring uniform and high-quality film formation.

2. Etching and Cleaning: Vacuum pumps are utilized in etching and cleaning processes, which involve the removal of specific layers or contaminants from semiconductor wafers. Dry etching techniques, such as plasma etching and reactive ion etching, require a vacuum environment to facilitate the ionization and removal of material. Vacuum pumps aid in creating the necessary low-pressure conditions for efficient etching and cleaning processes.

3. Ion Implantation: Ion implantation is a process used to introduce impurities into specific regions of a semiconductor wafer to modify its electrical properties. Vacuum pumps are used to evacuate the ion implantation chamber, creating the required vacuum environment for accurate and controlled ion beam acceleration and implantation.

4. Wafer Handling and Transfer: Vacuum pumps are employed in wafer handling and transfer systems. These systems utilize vacuum suction to securely hold and manipulate semiconductor wafers during various manufacturing steps, such as loading and unloading from process chambers, robotic transfer between tools, and wafer alignment.

5. Load Lock Systems: Load lock systems are used to transfer semiconductor wafers between atmospheric conditions and the vacuum environment of process chambers. Vacuum pumps are integral components of load lock systems, creating and maintaining the vacuum conditions necessary for wafer transfer while minimizing contamination risks.

6. Metrology and Inspection: Vacuum pumps are utilized in metrology and inspection tools used for characterizing semiconductor devices. These tools, such as scanning electron microscopes (SEMs) and focused ion beam (FIB) systems, often operate in a vacuum environment to enable high-resolution imaging and accurate analysis of semiconductor structures and defects.

7. Leak Detection: Vacuum pumps are employed in leak detection systems to identify and locate leaks in vacuum chambers, process lines, and other components. These systems rely on vacuum pumps to evacuate the system and then monitor for any pressure rise, indicating the presence of leaks.

8. Cleanroom Environment Control: Semiconductor manufacturing facilities maintain cleanroom environments to prevent contamination during the fabrication process. Vacuum pumps are used in the design and operation of the cleanroom ventilation and filtration systems, helping to maintain the required air cleanliness levels by removing particulates and maintaining controlled air pressure differentials.

Vacuum pumps used in semiconductor manufacturing processes are often specialized to meet the stringent requirements of the industry. They need to provide high vacuum levels, precise control, low contamination levels, and reliability for continuous operation.

Overall, vacuum pumps are indispensable in semiconductor manufacturing, enabling the creation of the necessary vacuum conditions for various processes, ensuring the production of high-quality semiconductor devices.

vacuum pump

Can Vacuum Pumps Be Used for Chemical Distillation?

Yes, vacuum pumps are commonly used in chemical distillation processes. Here’s a detailed explanation:

Chemical distillation is a technique used to separate or purify components of a mixture based on their different boiling points. The process involves heating the mixture to evaporate the desired component and then condensing the vapor to collect the purified substance. Vacuum pumps play a crucial role in chemical distillation by creating a reduced pressure environment, which lowers the boiling points of the components and enables distillation at lower temperatures.

Here are some key aspects of using vacuum pumps in chemical distillation:

1. Reduced Pressure: By creating a vacuum or low-pressure environment in the distillation apparatus, vacuum pumps lower the pressure inside the system. This reduction in pressure lowers the boiling points of the components, allowing distillation to occur at temperatures lower than their normal boiling points. This is particularly useful for heat-sensitive or high-boiling-point compounds that would decompose or become thermally degraded at higher temperatures.

2. Increased Boiling Point Separation: Vacuum distillation increases the separation between the boiling points of the components, making it easier to achieve a higher degree of purification. In regular atmospheric distillation, the boiling points of some components may overlap, leading to less effective separation. By operating under vacuum, the boiling points of the components are further apart, improving the selectivity and efficiency of the distillation process.

3. Energy Efficiency: Vacuum distillation can be more energy-efficient compared to distillation under atmospheric conditions. The reduced pressure lowers the required temperature for distillation, resulting in reduced energy consumption and lower operating costs. This is particularly advantageous when dealing with large-scale distillation processes or when distilling heat-sensitive compounds that require careful temperature control.

4. Types of Vacuum Pumps: Different types of vacuum pumps can be used in chemical distillation depending on the specific requirements of the process. Some commonly used vacuum pump types include:

– Rotary Vane Pumps: Rotary vane pumps are widely used in chemical distillation due to their ability to achieve moderate vacuum levels and handle various gases. They work by using rotating vanes to create chambers that expand and contract, enabling the pumping of gas or vapor.

– Diaphragm Pumps: Diaphragm pumps are suitable for smaller-scale distillation processes. They use a flexible diaphragm that moves up and down to create a vacuum and compress the gas or vapor. Diaphragm pumps are often oil-free, making them suitable for applications where avoiding oil contamination is essential.

– Liquid Ring Pumps: Liquid ring pumps can handle more demanding distillation processes and corrosive gases. They rely on a rotating liquid ring to create a seal and compress the gas or vapor. Liquid ring pumps are commonly used in chemical and petrochemical industries.

– Dry Screw Pumps: Dry screw pumps are suitable for high-vacuum distillation processes. They use intermeshing screws to compress and transport gas or vapor. Dry screw pumps are known for their high pumping speeds, low noise levels, and oil-free operation.

Overall, vacuum pumps are integral to chemical distillation processes as they create the necessary reduced pressure environment that enables distillation at lower temperatures. By using vacuum pumps, it is possible to achieve better separation, improve energy efficiency, and handle heat-sensitive compounds effectively. The choice of vacuum pump depends on factors such as the required vacuum level, the scale of the distillation process, and the nature of the compounds being distilled.

vacuum pump

How Are Vacuum Pumps Different from Air Compressors?

Vacuum pumps and air compressors are both mechanical devices used to manipulate air and gas, but they serve opposite purposes. Here’s a detailed explanation of their differences:

1. Function:

– Vacuum Pumps: Vacuum pumps are designed to remove or reduce the pressure within a closed system, creating a vacuum or low-pressure environment. They extract air or gas from a chamber, creating suction or negative pressure.

– Air Compressors: Air compressors, on the other hand, are used to increase the pressure of air or gas. They take in ambient air or gas and compress it, resulting in higher pressure and a compacted volume of air or gas.

2. Pressure Range:

– Vacuum Pumps: Vacuum pumps are capable of generating pressures below atmospheric pressure or absolute zero pressure. The pressure range typically extends into the negative range, expressed in units such as torr or pascal.

– Air Compressors: Air compressors, on the contrary, operate in the positive pressure range. They increase the pressure above atmospheric pressure, typically measured in units like pounds per square inch (psi) or bar.

3. Applications:

– Vacuum Pumps: Vacuum pumps have various applications where the creation of a vacuum or low-pressure environment is required. They are used in processes such as vacuum distillation, vacuum drying, vacuum packaging, and vacuum filtration. They are also essential in scientific research, semiconductor manufacturing, medical suction devices, and many other industries.

– Air Compressors: Air compressors find applications where compressed air or gas at high pressure is needed. They are used in pneumatic tools, manufacturing processes, air conditioning systems, power generation, and inflating tires. Compressed air is versatile and can be employed in numerous industrial and commercial applications.

4. Design and Mechanism:

– Vacuum Pumps: Vacuum pumps are designed to create a vacuum by removing air or gas from a closed system. They may use mechanisms such as positive displacement, entrapment, or momentum transfer to achieve the desired vacuum level. Examples of vacuum pump types include rotary vane pumps, diaphragm pumps, and diffusion pumps.

– Air Compressors: Air compressors are engineered to compress air or gas, increasing its pressure and decreasing its volume. They use mechanisms like reciprocating pistons, rotary screws, or centrifugal force to compress the air or gas. Common types of air compressors include reciprocating compressors, rotary screw compressors, and centrifugal compressors.

5. Direction of Air/Gas Flow:

– Vacuum Pumps: Vacuum pumps draw air or gas into the pump and then expel it from the system, creating a vacuum within the chamber or system being evacuated.

– Air Compressors: Air compressors take in ambient air or gas and compress it, increasing its pressure and storing it in a tank or delivering it directly to the desired application.

While vacuum pumps and air compressors have different functions and operate under distinct pressure ranges, they are both vital in various industries and applications. Vacuum pumps create and maintain a vacuum or low-pressure environment, while air compressors compress air or gas to higher pressures for different uses and processes.

China Good quality 6/12/24VDC Long Lifetime Electric DC Diaphragm Vacuum Pump   vacuum pump ac system	China Good quality 6/12/24VDC Long Lifetime Electric DC Diaphragm Vacuum Pump   vacuum pump ac system
editor by Dream 2024-05-07

China manufacturer DN300 Large Roots Blower Vacuum Pump 6000m3/H Air Cooling Type vacuum pump electric

Product Description

COMPANY PROFILE
B-Tohin Machine (ZheJiang ) Co., Ltd., a foreign-funded enterprise, was established in 1994 with a registered capital of 120 million yuan. located in HangZhou Environmental Science and Technology Industrial Park, China. It is mainly engaged in the production and sales of Roots blowers, rotary blowers, single-stage high-speed centrifugal blowers, multi-stage centrifugal blowers, air bearing turbo blower, maglev turbo blower, screw blowers, fiberglass blowers, stainless steel blowers, MVR blowers, vacuum pumps, water pumps and other products, as well as the distribution of ShinMaywa pumps imported from Japan. The products are used in environmental protection water treatment, building materials cement, chemical industry, electric power, petroleum, steel, metallurgy, mining, printing and dyeing, grain transportation, new energy and new materials and other industries, the products are sold all over the country, and exported to many countries and regions. At present, there are more than 310 employees, the annual sales value of 450 million yuan, the production of various types of blowers about 30,000 sets.
Passed the certification of ISO9001 & ISO 14001:2400, the company also has been certified as “High & New-tech Enterprises of ZheJiang Province”, “Pneumatic Technology Research Center of ZheJiang Province”, “Well-known Trademark of China”, “Famous Trademark of ZheJiang Province”and “Eco-friendly Products”, and it has achieved many patents of state level and National CHINAMFG Plan Projects.In successive 7 years, B-Tohin has been honored as “Favorite Brand of Users in Water Treatment Industry” and “Leading Enterprise in Chinese Roots Blower Industry, and in 2014, it has been ranked “2014 Top 10 Brands in Chinese Water Industry”.

BLG permanent magnet variable frequency screw blower:
1.The male and female rotors of the oil-free screw blower are precisely designed. Compared with roots blower, they achieve internal compression in the cavity, and are more efficient and save more than 20% energy under the same energy consumption conditions.

2.The conveying air volume is stable, and the air volume fluctuates less with the change of pressure.

3.It has higher conveying pressure and lower operating noise.

4.It can be controlled by PLC intelligent remote control, using a variety of communication methods, and convenient operation and management.

2. Product features

Design concept:

(1) Main structure: dry oil-free twin-screw rotor design, using spiral internal compression mode, no pulse of air output. Ductile iron production, high efficiency, rotor surface coating, strong adhesion, extend the life of the main engine.

Bearings: CHINAMFG original composite bearings adapt to changing loads, providing a high degree of flexibility and efficiency.

Seal: Labyrinth seal, carbon ring seal combination or gas seal, magnetic oil seal combination, to provide oil-free and dust-free pure compression chamber.

(2) More efficient and energy saving: The high efficiency and energy saving screw blower adopts oil-free screw energy-saving host and permanent magnet frequency conversion system, which has more intuitive economic benefits than the traditional Roots fan. Oil-free screw blower based on the principle of thermal compression, the total efficiency of more than 75%, than Roots fan energy saving about 10%. It also has higher exhaust pressure and lower pressure pulse.

(3) More stable and reliable: After high temperature performance test, durable and reliable, multi-duct air intake, can overcome a variety of complex conditions.

(4) Lower noise: The pneumatic noise of the screw fan is very small, the smooth output eliminates the sudden release of the internal air, and the air rattle of the wavy inlet and outlet is reduced, making the fan noise less than the traditional blower, without whistling. Due to the internal compression of the helical rotor, the pressure impact noise of the blower outlet pressure and pipeline pressure is eliminated, the gas is output smoothly, and the wave inlet and air outlet reduce the airflow fluctuation. Box screw overall noise ≤85 dB.
(5) Stability

Compared with Roots blowers:

The unit has small leakage, low temperature rise and strong pressure boost, up to 150KPa (1.5bar).

Compared with centrifugal blowers:

Strong adaptability to working conditions, no surge, flow rate almost does not change with pressure changes.

(6) Intelligence

The integrated skid box can be installed and moved as a whole. Site installation workload is less, only need to complete the interface pipe

The connection between the road and the external electrical can work.

The box is integrated with temperature and pressure monitoring instrument, signal control module, frequency converter, touch screen and other electrical components, without additional installation.

Operation control system: integrated station monitoring instrument, signal control module, frequency converter, touch screen and other no additional installation, optimize the selection of driving components, parameter setting class accurate to achieve high efficiency, automatic control and protection functions, while realizing online control and remote control, a variety of operating modes, users can adjust the power saving operation according to changes in working conditions.

(7) Low cost: The optimized structural design enables us to consume less, ensure the durability of the product, and the unit runs smoothly, the load is small, and no special infrastructure is required.

(8) Self-lubrication: the host internal oil dumping device, suitable for low pressure, 40~90KPar, some models can be used to 120KPa.

(9) Forced lubrication: the main engine has no lubrication device, and the oil pump needs to be forced to supply oil to achieve the effect of lubrication and cooling. Applicable pressure up to 150KPa.

3. Classification

 

B-Tohin Oil-free screw blower
Economical screw blower Intelligent screw blower
The whole machine is composed of a host, three-phase asynchronous motor, noise reduction device, frame, instrument, valve, etc. All functional components are integrated on a whole base, which can be installed and moved as a whole.
The production and assembly of the equipment are completed in the factory, the on-site installation workload is less, and the interface pipe and external electrical connection can be completed.
 
Temperature and pressure monitoring instrument, signal control module, frequency converter, touch screen, etc., are integrated in the integrated skid-mounted box, without additional installation.
Optional: (1) Direct coupling drive
(5) Split acoustic enclosure
(6) Variable frequency motor
Variable frequency control cabinet
 
integration
Component features:
All functional components are integrated into a single base, which can be installed and moved as a whole.
 
Component features:
(4) Screw host: high efficiency profile rotor design, using national standard 5 precision grade same gear and drive gear, innovative bearing arrangement, using fixed radial bearings and axial bearings, increase the service life, piston ring seal + magnetic seal to achieve compression cavity and lubrication cavity oil and gas separation.
(5) permanent magnet motor: magnetic field properties, do not need external energy to maintain its magnetic field, high efficiency and energy saving, in the speed range of 1000-3600r/min, the average efficiency can reach 75%-80%, high voltage stability accuracy, can extend the service life of the battery, no brush, no collector ring, no spark generation in operation, greatly improve the performance.
Operation control system: integrated station monitoring instrument, signal control module, frequency converter, touch screen, no additional installation, optimize the selection of driving components, parameter setting class accurate to achieve high efficiency, automatic control and protection functions, while realizing online control and remote control, a variety of operating modes, users can adjust the power saving operation mode according to changes in working conditions.

4.Performance table

5, Daily maintenance
 

B-Tohin Oil-free screw blower  
Economical screw blower Intelligent screw blower  
The whole machine is composed of a host, three-phase asynchronous motor, noise reduction device, frame, instrument, valve, etc. All functional components are integrated on a whole base, which can be installed and moved as a whole.
The production and assembly of the equipment are completed in the factory, the on-site installation workload is less, and the interface pipe and external electrical connection can be completed.
 
Temperature and pressure monitoring instrument, signal control module, frequency converter, touch screen, etc., are integrated in the integrated skid-mounted box, without additional installation.  
Optional: (1) Direct coupling drive
(5) Split acoustic enclosure
(6) Variable frequency motor
Variable frequency control cabinet
 
integration  
Component features:
All functional components are integrated into a single base, which can be installed and moved as a whole.
 
Component features:
(4) Screw host: high efficiency profile rotor design, using national standard 5 precision grade same gear and drive gear, innovative bearing arrangement, using fixed radial bearings and axial bearings, increase the service life, piston ring seal + magnetic seal to achieve compression cavity and lubrication cavity oil and gas separation.
(5) permanent magnet motor: magnetic field properties, do not need external energy to maintain its magnetic field, high efficiency and energy saving, in the speed range of 1000-3600r/min, the average efficiency can reach 75%-80%, high voltage stability accuracy, can extend the service life of the battery, no brush, no collector ring, no spark generation in operation, greatly improve the performance.
Operation control system: integrated station monitoring instrument, signal control module, frequency converter, touch screen, no additional installation, optimize the selection of driving components, parameter setting class accurate to achieve high efficiency, automatic control and protection functions, while realizing online control and remote control, a variety of operating modes, users can adjust the power saving operation mode according to changes in working conditions.
 

6.Applications:

7.QUALIFICATION CERTIFICATE:

8.FAQ
1. What’s the information should I provide when inquiry?
A: Air capacity
B: Pressure
C: Application
D: Use environment(Temperature, atmospheric pressure)
E: Do you need motor?
Or other specials you give us will be more appreciated.

2. What is your warranty?
Our warranty is 12 months after received the roots blower. During the warranty period, replace the damaged parts for free of charge. Out warranty period, to provide timely, high-quality technical services and price concessions spare parts to ensure continuous safe and high-quality equipment operation.

3. How long is the service life of roots blower?
In normal use environment
A- Service life of blower is more than 10 years.
B- Service life of Impeller is more than 60, 000 hours.
C- Service life of bearing is more than 50, 000 hours.
D- Service life of gear is more than 60, 000 hours.

4. What is your terms of packing?
A: Generally, we pack our goods in Fumigation Free Plywood Case. If you have legally registered patent, we can pack the goods in your branded boxes after getting your authorization letters.

5. How does your factory control product quality?
We have quality inspection department. Before sending out product, we check each product. If there is quality problem, we will produce new one.

6. What are your terms of payment?
1. TT 30% AS THE ADVANCE PAYMENT AND TT 70% AFTER INSPECTION BEFORE SHIPPING.
2.100% IRREVOCABLE L/C AT STGHT. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Months
Warranty: 12 Months
Type: Sludge Dewatering Machine
Method: Combined Treatment
Usage: Industrial, Agriculture, Hospital
Transport Package: Wooden Package
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Packaging?

Yes, vacuum pumps can be used for vacuum packaging. Here’s a detailed explanation:

Vacuum packaging is a method used to remove air from a package or container, creating a vacuum environment. This process helps to extend the shelf life of perishable products, prevent spoilage, and maintain product freshness. Vacuum pumps play a crucial role in achieving the desired vacuum level for effective packaging.

When it comes to vacuum packaging, there are primarily two types of vacuum pumps commonly used:

1. Single-Stage Vacuum Pumps: Single-stage vacuum pumps are commonly used for vacuum packaging applications. These pumps use a single rotating vane or piston to create a vacuum. They can achieve moderate vacuum levels suitable for most packaging requirements. Single-stage pumps are relatively simple in design, compact, and cost-effective.

2. Rotary Vane Vacuum Pumps: Rotary vane vacuum pumps are another popular choice for vacuum packaging. These pumps utilize multiple vanes mounted on a rotor to create a vacuum. They offer higher vacuum levels compared to single-stage pumps, making them suitable for applications that require deeper levels of vacuum. Rotary vane pumps are known for their reliability, consistent performance, and durability.

When using vacuum pumps for vacuum packaging, the following steps are typically involved:

1. Preparation: Ensure that the packaging material, such as vacuum bags or containers, is suitable for vacuum packaging and can withstand the vacuum pressure without leakage. Place the product to be packaged inside the appropriate packaging material.

2. Sealing: Properly seal the packaging material, either by heat sealing or using specialized vacuum sealing equipment. This ensures an airtight enclosure for the product.

3. Vacuum Pump Operation: Connect the vacuum pump to the packaging equipment or directly to the packaging material. Start the vacuum pump to initiate the vacuuming process. The pump will remove the air from the packaging, creating a vacuum environment.

4. Vacuum Level Control: Monitor the vacuum level during the packaging process using pressure gauges or vacuum sensors. Depending on the specific packaging requirements, adjust the vacuum level accordingly. The goal is to achieve the desired vacuum level suitable for the product being packaged.

5. Sealing and Closure: Once the desired vacuum level is reached, seal the packaging material completely to maintain the vacuum environment. This can be done by heat sealing the packaging material or using specialized sealing mechanisms designed for vacuum packaging.

6. Product Labeling and Storage: After sealing, label the packaged product as necessary and store it appropriately, considering factors such as temperature, humidity, and light exposure, to maximize product shelf life.

It’s important to note that the specific vacuum level required for vacuum packaging may vary depending on the product being packaged. Some products may require a partial vacuum, while others may require a more stringent vacuum level. The choice of vacuum pump and the control mechanisms employed will depend on the specific vacuum packaging requirements.

Vacuum pumps are widely used in various industries for vacuum packaging applications, including food and beverage, pharmaceuticals, electronics, and more. They provide an efficient and reliable means of creating a vacuum environment, helping to preserve product quality and extend shelf life.

vacuum pump

Can Vacuum Pumps Be Used in the Production of Solar Panels?

Yes, vacuum pumps are extensively used in the production of solar panels. Here’s a detailed explanation:

Solar panels, also known as photovoltaic (PV) panels, are devices that convert sunlight into electricity. The manufacturing process of solar panels involves several critical steps, many of which require the use of vacuum pumps. Vacuum technology plays a crucial role in ensuring the efficiency, reliability, and quality of solar panel production. Here are some key areas where vacuum pumps are utilized:

1. Silicon Ingot Production: The first step in solar panel manufacturing is the production of silicon ingots. These ingots are cylindrical blocks of pure crystalline silicon that serve as the raw material for solar cells. Vacuum pumps are used in the Czochralski process, which involves melting polycrystalline silicon in a quartz crucible and then slowly pulling a single crystal ingot from the molten silicon. Vacuum pumps create a controlled environment by removing impurities and preventing contamination during the crystal growth process.

2. Wafering: After the silicon ingots are produced, they undergo wafering, where the ingots are sliced into thin wafers. Vacuum pumps are used in wire saws to create a low-pressure environment that helps to cool and lubricate the cutting wire. The vacuum also assists in removing the silicon debris generated during the slicing process, ensuring clean and precise cuts.

3. Solar Cell Production: Vacuum pumps play a significant role in various stages of solar cell production. Solar cells are the individual units within a solar panel that convert sunlight into electricity. Vacuum pumps are used in the following processes:

– Diffusion: In the diffusion process, dopants such as phosphorus or boron are introduced into the silicon wafer to create the desired electrical properties. Vacuum pumps are utilized in the diffusion furnace to create a controlled atmosphere for the diffusion process and remove any impurities or gases that may affect the quality of the solar cell.

– Deposition: Thin films of materials such as anti-reflective coatings, passivation layers, and electrode materials are deposited onto the silicon wafer. Vacuum pumps are used in various deposition techniques like physical vapor deposition (PVD) or chemical vapor deposition (CVD) to create the necessary vacuum conditions for precise and uniform film deposition.

– Etching: Etching processes are employed to create the desired surface textures on the solar cell, which enhance light trapping and improve efficiency. Vacuum pumps are used in plasma etching or wet etching techniques to remove unwanted material or create specific surface structures on the solar cell.

4. Encapsulation: After the solar cells are produced, they are encapsulated to protect them from environmental factors such as moisture and mechanical stress. Vacuum pumps are used in the encapsulation process to create a vacuum environment, ensuring the removal of air and moisture from the encapsulation materials. This helps to achieve proper bonding and prevents the formation of bubbles or voids, which could degrade the performance and longevity of the solar panel.

5. Testing and Quality Control: Vacuum pumps are also utilized in testing and quality control processes during solar panel production. For example, vacuum systems can be used for leak testing to ensure the integrity of the encapsulation and to detect any potential defects or leaks in the panel assembly. Vacuum-based measurement techniques may also be employed for assessing the electrical characteristics and efficiency of the solar cells or panels.

In summary, vacuum pumps are integral to the production of solar panels. They are used in various stages of the manufacturing process, including silicon ingot production, wafering, solar cell production (diffusion, deposition, and etching), encapsulation, and testing. Vacuum technology enables precise control, contamination prevention, and efficient processing, contributing to the production of high-quality and reliable solar panels.vacuum pump

What Industries Commonly Rely on Vacuum Pump Technology?

Vacuum pump technology finds applications in various industries where creating and controlling vacuum or low-pressure environments is crucial. Here’s a detailed explanation:

1. Manufacturing and Production: Vacuum pumps are extensively used in manufacturing and production processes across multiple industries. They are employed for tasks such as vacuum molding, vacuum packaging, vacuum degassing, vacuum drying, and vacuum distillation. Industries like automotive, aerospace, electronics, pharmaceuticals, and food processing rely on vacuum pump technology to achieve precise and controlled manufacturing conditions.

2. Chemical and Pharmaceutical: The chemical and pharmaceutical industries heavily rely on vacuum pumps for numerous applications. These include solvent recovery, vacuum filtration, vacuum drying, distillation, crystallization, and evaporation. Vacuum pumps enable these industries to carry out critical processes under reduced pressure, ensuring efficient separation, purification, and synthesis of various chemical compounds and pharmaceutical products.

3. Semiconductor and Electronics: The semiconductor and electronics industries extensively use vacuum pumps for manufacturing microchips, electronic components, and electronic devices. Vacuum pumps are crucial in processes such as physical vapor deposition (PVD), chemical vapor deposition (CVD), etching, ion implantation, and sputtering. These processes require controlled vacuum conditions to ensure precise deposition, surface modification, and contamination-free manufacturing.

4. Research and Development: Vacuum pump technology is integral to research and development activities across scientific disciplines. It supports experiments and investigations in fields such as physics, chemistry, materials science, biology, and environmental science. Vacuum pumps facilitate processes like freeze drying, vacuum distillation, vacuum evaporation, vacuum spectroscopy, and creating controlled atmospheric conditions for studying various phenomena.

5. Food and Beverage: The food and beverage industry relies on vacuum pumps for packaging and preservation purposes. Vacuum sealing is used to extend the shelf life of food products by removing air and creating a vacuum-sealed environment that inhibits spoilage and maintains freshness. Vacuum pumps are also used in processes like freeze drying, vacuum concentration, and vacuum cooling.

6. Oil and Gas: In the oil and gas industry, vacuum pumps play a role in various applications. They are used for crude oil vacuum distillation, vacuum drying, vapor recovery, gas compression, and gas stripping processes. Vacuum pumps help maintain optimal conditions during oil refining, gas processing, and petrochemical manufacturing.

7. Environmental and Waste Management: Vacuum pumps are employed in environmental and waste management applications. They are used for tasks such as soil vapor extraction, groundwater remediation, landfill gas recovery, and wastewater treatment. Vacuum pumps facilitate the removal and containment of gases, vapors, and pollutants, contributing to environmental protection and sustainable waste management.

8. Medical and Healthcare: The medical and healthcare sectors utilize vacuum pumps for various purposes. They are used in medical equipment such as vacuum-assisted wound therapy devices, vacuum-based laboratory analyzers, and vacuum suction systems in hospitals and clinics. Vacuum pumps are also used in medical research, pharmaceutical production, and medical device manufacturing.

9. Power Generation: Vacuum pumps play a role in power generation industries, including nuclear power plants and thermal power plants. They are used for steam condensation, turbine blade cooling, vacuum drying during transformer manufacturing, and vacuum systems for testing and maintenance of power plant equipment.

10. HVAC and Refrigeration: The HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries rely on vacuum pumps for system installation, maintenance, and repair. Vacuum pumps are used to evacuate air and moisture from refrigerant lines and HVAC systems, ensuring optimal system performance and efficiency.

These are just a few examples of industries that commonly rely on vacuum pump technology. The versatility and wide-ranging applications of vacuum pumps make them indispensable tools across numerous sectors, enabling precise control over vacuum conditions, efficient manufacturing processes, and scientific investigations.

China manufacturer DN300 Large Roots Blower Vacuum Pump 6000m3/H Air Cooling Type   vacuum pump electricChina manufacturer DN300 Large Roots Blower Vacuum Pump 6000m3/H Air Cooling Type   vacuum pump electric
editor by Dream 2024-05-03

China supplier 2BV China Electric Pump Stainless Steel Pump Liquid Water Ring Vacuum Pump for Milking Machine vacuum pump electric

Product Description

Detailed Photos

Product Description

2BV water ring vacuum pump is suitable for the extraction of gas and water vapor, the suction pressure can reach 33mbar(97% vacuum). When transformer oil is used as the working fluid (called oil-ring vacuum pump), the suction pressure can reach 6.7mbar(99.3% vacuum), which can replace reciprocating vacuum pump. When the liquid ring vacuum pump works for a long time under suction pressure close to vacuum, the cavitation protection tube should be connected to protect the pump and eliminate the cavitation erosion sound. When used as a compressor, its pressure is up to 0.26MPa.

2BV2-EX and 2BV6 water ring vacuum pumps/compressors are mainly used for removing inflammable and explosive environments, and their performance parameters are the same as those of 2BV2 and 2BV5 series.

2BV series stainless steel vacuum pump can be used in high corrosion resistance and cleanliness requirements of the occasion. 2BV series stainless steel vacuum pump flow parts: pump body, pump cover, disc, impeller material can be selected 304, 316, 316L stainless steel. (Please specify when ordering)

Product Parameters

 

Product model Maximum air volume Limit Vacuum Degree Motor power Explosion-proof grade of motor Motor Protection Level Pump speed Working fluid flow rate noise Weight
m3/min m3/h mbar(MPa) kW r.p.m L/min dB(A) kg
2BV2 060 0.45 27 33mbar 0.81 No explosion proof IP54 2840 2 62 31
2BV2 061 0.87 52 (-0.098MPa) 1.45 2840 2 65 35
2BV2 070 1.33 80   2.35 2860 2.5 66 56
2BV2 071 1.83 110   3.85 2880 4.2 72 65
2BV2 060-Ex 0.45 27   1.1 IP55 2840 2 62 39
2BV2 061-Ex 0.86 52   1.5 2840 2 65 45
2BV2 070-Ex 1.33 80   3 2860 2.5 66 66
2BV2 071-Ex 1.83 110   4 2880 4.2 72 77
2BV5 110 2.75 165   4 No explosion proof IP54 1440 6.7 63 103
2BV5 111 3.83 230   5.5 1440 8.3 68 117
2BV5 121 4.67 280   7.5 1440 10 69 149
2BV5 131 6.67 400   11 1460 15 73 205
2BV5 161 8.33 500   15 970 20 74 331
2BV6 110-EX 2.75 165   4 dIIBT4 IP55 1440 6.7 63 153
2BV6 111-EX 3.83 230   5.5 1440 8.3 68 208
2BV6 121-EX 4.66 280   7.5 1440 10 69 240
2BV6 131-EX 6.66 400   11 1460 15 73 320
2BV6 161-EX 8.33 500   15 970 20 74 446

Company Profile

ZheJiang CZPT Pumps is a manufacturer with many years of experience in mining, power generation, dredging, hydraulic, irrigation, slurry transportation, construction, seawater, oil and gas transportation, solar energy system and other industries. 

We can provide you with high efficiency and energy saving of multistage pump, boiler feed pump, slurry pump, oil pump, self-priming pump, chemical pump, mining pumps, submersible pumps, sewage pumps, sea water pumps, solar pumps, fire pumps, split case pumps, irrigation pumps and other products.

Our Products sales well to Europe, America, Southeast Asia, Oceania, Middle East and Africa more than 90 countries.

Our products are widely used in mining, mineral processing, metallurgy, iron and steel, boiler water supply, oil field, chemical industry, paper making, water conservancy facilities, sewage treatment, drainage and water supply.

We have strong technical force, advanced production testing equipment, scientific management methods, stable and reliable quality products, perfect after-sales service.

We are committed to providing the highest level of customer service, competitive prices, fast delivery and comprehensive, sophisticated products. Your satisfaction is our ultimate goal!
 

Working House

Certificate

Our Services
1. Processing with supplied drawing
2. Processing with supplied samples
3. Produce all kinds of anti CZPT spare parts except for pump
4. Product warranty:lifetime, no matter how long to use,if there is air hole in the flow parts,please return it,will give you a new 1 to replace.

Application

Packaging & Shipping

FAQ

1. Q: Whats the MOQ ?
A: 1 set for regular product ,the special 1 we need to discuss.
 
2. Q : What’re your payments ? 
A: For small order valve < 4000USD, our customer chose 100% T/T.
For order valve >4000USD, we can accept 30 % T/T in advance , 70 % should be paid before shipment.
 
3 . Q : How long is the deliver time ?
A : For the order in stock ,we will deliver goods at once against payment.
For the orders out of stock , the products time is 7 days for bare pump, 25 days for electric pump set or diesel engine pump set , the deliver time is base on the shipping date and your order by sea.
 
4. Q: What about the package ?
A : Standard export plywood case .
 
5.Q : How is the pump delivered to us ?
A : For urgently order, we can ship by air, for large order ,it will be delivered by sea ,vehicle or multi-modal transport.

 
6. Q : How long is the warranty ?
A: According to the inter nation standards , pump in standard operation is 1 year ,3 months for spare parts.
 
Any further questions, lets talk together.

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hours Online Service
Warranty: 12-24 Months
Max.Head: >150m
Max.Capacity: >400 L/min
Driving Type: Motor
Impeller Number: Single-Stage Pump
Customization:
Available

|

Vacuum Pump

How to check the vacuum pump

A vacuum pump is a machine that draws gas molecules from a volume and maintains a partial vacuum. Its main job is to create a relative vacuum within the stated capabilities. If your vacuum pump isn’t working properly, it may need service. Read on to learn more about the types of vacuum pumps and how to check them.

Principle of industrial vacuum pump

Industrial vacuum pumps are used in industrial processes that require vacuum. These pumps are designed to generate, improve and maintain vacuum. Learn about the different types of industrial vacuum technology. You can start by reading about the most common types of industrial vacuum pumps. These pumps can be used in a variety of industrial processes from cleaning to manufacturing.
Regardless of the technology used to manufacture these pumps, the basic principles behind their operation are the same. The speed and mass flow of the pump will determine its capacity and suitability. A faster flow rate will minimize the time it takes for the machine to empty. Another important factor to consider is the type of vacuum you need.
A liquid ring vacuum pump is an industrial pump that uses a ring of liquid to form a seal. This type of pump is best suited for applications with high vapor loads and high liquid carry-over. Liquid ring vacuum pumps can be divided into two categories: liquid ring vacuum pumps and scroll vacuum pumps.
Industrial vacuum pumps work by removing gas molecules from a chamber. The partial vacuum created allows material to flow through the void. As more molecules are removed, the pressure in the chamber decreases, releasing energy that can be used for a variety of different purposes.
The most common use of industrial vacuum pumps is for electric lights. In these lamps, a vacuum pump removes the gas, causing the bulb to light up. Energy from the vacuum is also used in aircraft to power instruments. In addition to powering industrial vacuum cleaners, they are used in a variety of other environments.
High-performance industrial vacuum systems require specific materials that can withstand extreme pressure. This means that the materials used in these systems need to be properly checked. They must also be free of organic debris and other contaminants before they can be safely placed in the chamber.

Types of vacuum pumps

There are various types of vacuum pumps. Which one to choose should depend on the purpose of the pump and the degree of vacuum that must be achieved. It is mainly divided into three categories: rough vacuum or low vacuum, high vacuum and ultra-high vacuum. They all have varying degrees of scarcity. The higher the pressure, the fewer molecules per cubic centimeter. This in turn improves vacuum quality.
The vacuum pump is critical to the operation of the vacuum system. These devices are divided into three main categories according to their working pressure range. These pumps have different characteristics and technologies that make them ideal for specific applications. The choice of vacuum pump required for a particular application depends on how much vacuum you need, and how much power you are willing to spend.
Vacuum pumps are used in a variety of industrial and scientific processes. Their main function is to remove gas molecules from the sealed volume, leaving a partial vacuum. There are many different types of vacuum pumps, including rotary piston, liquid ring and scroll vacuum pumps. In addition, turbomolecular pumps are used.
Dry vacuum pumps are more expensive than wet vacuum pumps. Wet vacuum pumps use oil as their lubricating fluid. Different types of oils are used depending on the application. Some wet pumps have additional features, including contaminant filtration. However, wet systems have one major disadvantage: the contact between oil and fluid. To avoid this, oil separators are usually used.
There are several different types of vacuum pumps. The basic type is the positive displacement pump. It operates by expanding the chamber and removing gas molecules. The intake valve draws fluid into the chamber, while the exhaust valve opens when the chamber is at maximum expansion. This cycle repeats several times per second. Positive displacement pumps are often used in multistage vacuum systems.
Vacuum Pump

Maintenance of vacuum pump

Regular maintenance is very important to ensure the long-term effective use of the vacuum pump. One way to ensure proper pump performance is to change the oil regularly. Pump oil may be contaminated by vapor condensation. To avoid this problem, close the inlet valve for 20 to 30 minutes before applying vacuum. It is also important to install an inlet cold trap to protect the pump from corrosive vapors.
Another way to prolong the life of your vacuum pump is to periodically remove any solvent in it. This step reduces internal corrosion and prevents premature pump failure. During maintenance, be sure to disconnect the power supply to the vacuum pump. After cleaning, store it in a dry and safe place. The pump should also be disposed of in accordance with local regulations.
Vacuum pumps may require frequent oil changes, especially when used in wet chemistry. The standard rule is to change the oil after 3,000 hours of use, but some pumps require more frequent oil changes. It is also important to clean the oil regularly, as dirty or discolored oil can affect the performance of the pump.
Vacuum pumps are often equipped with on-site glass to allow the user to visually check the oil level. Clean oil will appear transparent, while dirty oil will appear darker. Frequent oil changes are essential, as oil changes can help spot various potential problems. Changes in vacuum pump performance or strange noises are also good indicators of a problem.
After an oil change, the vacuum pump should be cleaned thoroughly with a soft cloth and mild degreaser. Oil changes should take less than ten minutes, and they will extend the life of your equipment. Additionally, the outside of the pump should be wiped with a cloth or rag.
The pump must be properly vented to avoid internal corrosion. If possible, place the pump away from hot equipment or rooms. Overheating can reduce the viscosity of the oil and cause premature pump failure. In addition, it can lead to overwork of other expensive scientific equipment. Heat can also cause cracked rubber parts and oil leaks.
Vacuum Pump

Signs of damage to the vacuum pump

A bad vacuum pump can cause a variety of automotive problems, including poor fuel economy, difficult braking, undercarriage oil leaks, and faulty air conditioning. If any of these problems occur, call a mechanic to check your vehicle’s vacuum pump. You can also check the air conditioner and brake pedal to see if they are working properly.
A loud noise from the pump can also be a symptom of a malfunction. These noises are often caused by the aging and accumulated wear of specific components. If this is the case, the diaphragm, valve plate or seals may need to be replaced. However, if the noise is coming from bearings or other areas, more extensive repairs may be required. Additionally, dust and other contaminants can enter the pump chamber, which can degrade pump performance.
If the vacuum pump won’t start, it could be a blown fuse or a power or voltage problem. Other common causes are flow restrictions or improper installation at the entrance. Also, the vacuum pump may be damaged or the capacitors may be of poor quality. It’s not always easy to tell if a vacuum pump is leaking oil, but a greasy transmission can indicate a vacuum pump failure.
A leaking vacuum pump can also hiss when the car’s engine is running. If you hear it, check the hoses and connections to make sure there are no leaks. A vacuum leak may indicate a faulty vacuum pump, so you need to replace it as soon as possible.
Checking end pressure is easy, but a pressure gauge can also serve as a sign. You can also check for pump vibration by running a short procedure. Excessive vibration can be subtle, but it can greatly affect your process. If you notice excessive pump vibration, you should contact a professional immediately.
Poor pump performance can cause many problems for your company. A bad vacuum pump not only wastes material, it also damages your tools and reputation.

China supplier 2BV China Electric Pump Stainless Steel Pump Liquid Water Ring Vacuum Pump for Milking Machine   vacuum pump electricChina supplier 2BV China Electric Pump Stainless Steel Pump Liquid Water Ring Vacuum Pump for Milking Machine   vacuum pump electric
editor by Dream 2024-04-29

China Professional Reliable Rotary Vane Vacuum Pump for Lab and Instrument vacuum pump electric

Product Description

Oil Lubricated Rotary Vane Vacuum Pump (RH5710)
 

Product Description

A typical rotary vacuum pump is comprised of a housing, a rotor and a series of radially moving vanes, which come in dry-running or lubricated versions (the latter are the most commonly used in the majority of industrial applications). The rotor is generally the only continuously moving vane vacuum pump part. There’s also a working chamber inside the housing, which is divided into 2 separate compartments by the rotor and vanes. Many vane vacuum pumps also include an inlet valve as a safety feature.

Rotary vane vacuum pumps are available in single-stage and two-stage versions. The stages refer to the number of times that compression actually occurs. Two-stage pumps are also able to attain a lower pressure than single-stage pumps, due to the fact that gas is only admitted during the high pressure stage.

Rotary vane vacuum pumps are ideally suited for a wide range of low and medium vacuum applications such as general and chemical laboratory, analytics, CHINAMFG drying, process engineering and more. A rotary vane pump works via positive displacement, which is when volumes of air or gas are confined within a closed space and are compressed when the space is mechanically reduced.

Product Parameters

 

Product Model 50/60Hz RH5710
Pumping Speed 50Hz 100m³/H
60Hz 120m³/H
Ultimate Pressure mbar 0.1
Inlet Diameter   G1 1/4”
Voltage 50Hz 200-240/345-415V
60Hz 220=275/380-480V
Motor Power kW 3
Current (A) 50Hz 11.8/6.8
60Hz 13.0/7.5
Rotate Speed r/min 1405/1720
Noise Level dB 65
Oil Volume L 2.0
Net Weight kg 75

 

Detailed Photos

 

 

 

Installation Instructions

 

Certifications

Company Profile

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil
Structure: Rotary Vacuum Pump
Exhauster Method: Kinetic Vacuum Pump
Vacuum Degree: High Vacuum
Work Function: Maintain the Pump
Working Conditions: Dry
Samples:
US$ 1000/Set
1 Set(Min.Order)

|

Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Furnaces?

Yes, vacuum pumps can be used for vacuum furnaces. Here’s a detailed explanation:

Vacuum furnaces are specialized heating systems used in various industries for heat treatment processes that require controlled environments with low or no atmospheric pressure. Vacuum pumps play a crucial role in creating and maintaining the vacuum conditions necessary for the operation of vacuum furnaces.

Here are some key points regarding the use of vacuum pumps in vacuum furnaces:

1. Vacuum Creation: Vacuum pumps are used to evacuate the furnace chamber, creating a low-pressure or near-vacuum environment. This is essential for the heat treatment processes carried out in the furnace, as it helps eliminate oxygen and other reactive gases, preventing oxidation or unwanted chemical reactions with the heated materials.

2. Pressure Control: Vacuum pumps provide the means to control and maintain the desired pressure levels within the furnace chamber during the heat treatment process. Precise pressure control is necessary to achieve the desired metallurgical and material property changes during processes such as annealing, brazing, sintering, and hardening.

3. Contamination Prevention: By removing gases and impurities from the furnace chamber, vacuum pumps help prevent contamination of the heated materials. This is particularly important in applications where cleanliness and purity of the processed materials are critical, such as in the aerospace, automotive, and medical industries.

4. Rapid Cooling: Some vacuum furnace systems incorporate rapid cooling capabilities, known as quenching. Vacuum pumps assist in facilitating the rapid cooling process by removing the heat generated during quenching, ensuring efficient cooling and minimizing distortion or other unwanted effects on the treated materials.

5. Process Flexibility: Vacuum pumps provide flexibility in the type of heat treatment processes that can be performed in vacuum furnaces. Different heat treatment techniques, such as vacuum annealing, vacuum brazing, or vacuum carburizing, require specific pressure levels and atmospheric conditions that can be achieved and maintained with the use of vacuum pumps.

6. Vacuum Pump Types: Different types of vacuum pumps can be used in vacuum furnaces, depending on the specific requirements of the heat treatment process. Commonly used vacuum pump technologies include oil-sealed rotary vane pumps, dry screw pumps, diffusion pumps, and cryogenic pumps. The choice of vacuum pump depends on factors such as required vacuum level, pumping speed, reliability, and compatibility with the process gases.

7. Maintenance and Monitoring: Proper maintenance and monitoring of vacuum pumps are essential to ensure their optimal performance and reliability. Regular inspections, lubrication, and replacement of consumables (such as oil or filters) are necessary to maintain the efficiency and longevity of the vacuum pump system.

8. Safety Considerations: Operating vacuum furnaces with vacuum pumps requires adherence to safety protocols. This includes proper handling of potentially hazardous gases or chemicals used in the heat treatment processes, as well as following safety guidelines for operating and maintaining the vacuum pump system.

Overall, vacuum pumps are integral components of vacuum furnaces, enabling the creation and maintenance of the required vacuum conditions for precise and controlled heat treatment processes. They contribute to the quality, consistency, and efficiency of the heat treatment operations performed in vacuum furnaces across a wide range of industries.

vacuum pump

Considerations for Selecting a Vacuum Pump for Cleanroom Applications

When it comes to selecting a vacuum pump for cleanroom applications, several considerations should be taken into account. Here’s a detailed explanation:

Cleanrooms are controlled environments used in industries such as semiconductor manufacturing, pharmaceuticals, biotechnology, and microelectronics. These environments require strict adherence to cleanliness and particle control standards to prevent contamination of sensitive processes or products. Selecting the right vacuum pump for cleanroom applications is crucial to maintain the required level of cleanliness and minimize the introduction of contaminants. Here are some key considerations:

1. Cleanliness: The cleanliness of the vacuum pump is of utmost importance in cleanroom applications. The pump should be designed and constructed to minimize the generation and release of particles, oil vapors, or other contaminants into the cleanroom environment. Oil-free or dry vacuum pumps are commonly preferred in cleanroom applications as they eliminate the risk of oil contamination. Additionally, pumps with smooth surfaces and minimal crevices are easier to clean and maintain, reducing the potential for particle buildup.

2. Outgassing: Outgassing refers to the release of gases or vapors from the surfaces of materials, including the vacuum pump itself. In cleanroom applications, it is crucial to select a vacuum pump with low outgassing characteristics to prevent the introduction of contaminants into the environment. Vacuum pumps specifically designed for cleanroom use often undergo special treatments or use materials with low outgassing properties to minimize this effect.

3. Particle Generation: Vacuum pumps can generate particles due to the friction and wear of moving parts, such as rotors or vanes. These particles can become a source of contamination in cleanrooms. When selecting a vacuum pump for cleanroom applications, it is essential to consider the pump’s particle generation level and choose pumps that have been designed and tested to minimize particle emissions. Pumps with features like self-lubricating materials or advanced sealing mechanisms can help reduce particle generation.

4. Filtration and Exhaust Systems: The filtration and exhaust systems associated with the vacuum pump are critical for maintaining cleanroom standards. The vacuum pump should be equipped with efficient filters that can capture and remove any particles or contaminants generated during operation. High-quality filters, such as HEPA (High-Efficiency Particulate Air) filters, can effectively trap even the smallest particles. The exhaust system should be properly designed to ensure that filtered air is released outside the cleanroom or passes through additional filtration before being reintroduced into the environment.

5. Noise and Vibrations: Noise and vibrations generated by vacuum pumps can have an impact on cleanroom operations. Excessive noise can affect the working environment and compromise communication, while vibrations can potentially disrupt sensitive processes or equipment. It is advisable to choose vacuum pumps specifically designed for quiet operation and that incorporate measures to minimize vibrations. Pumps with noise-dampening features and vibration isolation systems can help maintain a quiet and stable cleanroom environment.

6. Compliance with Standards: Cleanroom applications often have specific industry standards or regulations that must be followed. When selecting a vacuum pump, it is important to ensure that it complies with relevant cleanroom standards and requirements. Considerations may include ISO cleanliness standards, cleanroom classification levels, and industry-specific guidelines for particle count, outgassing levels, or allowable noise levels. Manufacturers that provide documentation and certifications related to cleanroom suitability can help demonstrate compliance.

7. Maintenance and Serviceability: Proper maintenance and regular servicing of vacuum pumps are essential for their reliable and efficient operation. When choosing a vacuum pump for cleanroom applications, consider factors such as ease of maintenance, availability of spare parts, and access to service and support from the manufacturer. Pumps with user-friendly maintenance features, clear service instructions, and a responsive customer support network can help minimize downtime and ensure continued cleanroom performance.

In summary, selecting a vacuum pump for cleanroom applications requires careful consideration of factors such as cleanliness, outgassing characteristics, particle generation, filtration and exhaust systems, noise and vibrations, compliance with standards, and maintenance requirements. By choosing vacuum pumps designed specifically for cleanroom use and considering these key factors, cleanroom operators can maintain the required level of cleanliness and minimize the risk of contamination in their critical processes and products.

vacuum pump

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

3. Scroll Vacuum Pumps:

– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

4. Piston Vacuum Pumps:

– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

5. Turbo Molecular Vacuum Pumps:

– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

6. Diffusion Vacuum Pumps:

– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

7. Cryogenic Vacuum Pumps:

– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

China Professional Reliable Rotary Vane Vacuum Pump for Lab and Instrument   vacuum pump electricChina Professional Reliable Rotary Vane Vacuum Pump for Lab and Instrument   vacuum pump electric
editor by Dream 2024-04-29

China factory Sludge Drawing Pump, Screw Pump Stator Rotor Dry Screw Vacuum Pump, Electric Sludge Pump vacuum pump connector

Product Description

Product Description

Product Name:
sludge drawing pump, screw pump stator rotor dry screw vacuum pump, electric sludge pump
Summary:
    We have more than 20 types chemical process pump, such as API-610 standard pump ,horizontal pump, submersible pump, vertical pump,semi-submersible pump, fluoroplastic pump, axial pump ,gear pump.etc 
Application:
   They are used for transmission of liquids (oil, sea water ,sulphuric acid, phosphoric acid, H2SiF6acid, alkali liquid)  with lowor high temperature,
neutral or corrosive liquids ,or liquids with CHINAMFG granular and widely used in petroleum chemical industry ,oil refining industry, paper ,pulp industry ,
sugar industry ,mining ,etc
   Lots of material can be chose for different working condition, such as cast steel ,stainless steel 304,316,2205,904L, Hartz alloy C276,C22,
nickel-base alloy GH600, PVDF,PP, UHMWPE-lining .etc
   Pump a strong seal system :packing seal ,double face mechnical seal ,cartridge mechnical seal ,API682 flushing syestem. 
Advantage:
    Due to the German’s advanced sealing technology, the service life of the seal is more than 2 times than common seal.Stable performance / Low cavitations/ High efficiency (even if not at full capacity).   

We can manufacture stainless steel series/non – metal pump/API 610 Series:
Below photos are only for  reference only:

Detailed Photos

Stainless steel pump:
API 610 pump :
Non – metal pump:

Product list

Company Profile

       ZheJiang wangyuan industry pump Co.,ltd is a specialized manufacturer/supplier for thechemical pump,is located in HangZhou city (Near ZheJiang ).
With more than 30 years R&D, manufacturing and sales experience, we can supply many kinds of chemical pump with very good quality. and we have 
got ISO9001,ISO14001,ISO45001 certificates, and is a  High – Tech Enterprise in China .

      

Design

     The product design of the technology R&D center uses computer-aided systems for design,analysis and calculation. 3D-software such as SOLIDWORKS can be used for 3D simulation design of product structure. It can also use various professional software for hydraulic analysis and calculation, and use finite element analysis with professional software to evaluate product strength, reliability and safety.
The products designed by  the R&D center are in line with international mainstream standards such as API610, ISO, GB, ANSI and HI.
The design of nuclear power pumps can also be carried out according to ASME standards .

 

Certifications

FAQ

Q1: Are you manufacturer or trading company?
       Our company is a professional producer for pumps, and export pumps by ourselves.
 

Q2: What’s your business range?

       We manufacture chemical centrifugal pump, self-sucking pump, vertical/horizontal multistage pump,sewage pump, water pump,oil pump, screw pump, diaphragm pump, fire pump, constant pressure VFD water supply system and so on. 
 

Q3: How to check and verify the products?

       We support video inspection and verification .
 

Q4: What are your payment terms?

       Common terms: T/T 30% deposit, balance payment before shipment, L/C or Trade Assurance of alibaba.
 

Q5: How about warranty and after-service?

       12 months warranty time after receiving days, not include quick-wear parts and default phase.We promise 24 hours action for your problems.

     

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Max.Head: 2000m
Max.Capacity: 8000m3/H
Driving Type: Motor
Impeller Number: Single-Stage Pump
Working Pressure: Middle Pressure Pump
Influent Type of Impeller: Single Suction Pump
Customization:
Available

|

screw vane pump

Are there environmentally friendly options for screw vacuum pumps?

Yes, there are environmentally friendly options available for screw vacuum pumps. Here’s a detailed explanation of the eco-friendly features and considerations associated with screw vacuum pumps:

1. Oil-Free Operation:

One of the key environmentally friendly features of screw vacuum pumps is their ability to operate without the use of oil. Traditional vacuum pumps, such as rotary vane pumps or liquid ring pumps, often require oil for lubrication and sealing. However, oil-free screw vacuum pumps eliminate the need for oil, resulting in cleaner and more environmentally friendly operation. Oil-free pumps can be particularly beneficial in applications where the pumped gases come into direct contact with the process or need to remain free from oil contamination.

2. Reduced Emissions:

Screw vacuum pumps contribute to reduced emissions compared to certain other types of pumps. By eliminating oil from the operation, there is no risk of oil carryover or vapor emissions that could adversely affect the environment. This is especially important in applications where the pumped gases contain volatile compounds, as oil-free screw vacuum pumps help prevent the release of harmful substances into the atmosphere. Additionally, screw vacuum pumps with built-in gas and vapor ballast options can further reduce emissions by facilitating the extraction of condensable vapors and preventing their release into the environment.

3. Energy Efficiency:

Energy efficiency is a crucial factor in environmentally friendly operation. Screw vacuum pumps are known for their high efficiency, which translates into reduced energy consumption. By minimizing power requirements, energy-efficient screw vacuum pumps help conserve energy and lower greenhouse gas emissions. Choosing pumps with advanced control systems, variable speed drives, or frequency converters can further enhance energy efficiency by allowing precise control and optimization of pump performance based on demand.

4. Noise Reduction:

Screw vacuum pumps often have quieter operation compared to certain other types of pumps. The design of screw pumps, with balanced rotors and reduced internal clearances, helps minimize noise and vibration. Reduced noise levels not only contribute to a more comfortable and quieter working environment but also have positive environmental implications by minimizing noise pollution in surrounding areas.

5. Long Service Life and Durability:

Screw vacuum pumps are typically built with durable materials and have a robust design, resulting in a long service life. Prolonged equipment lifespan reduces the need for frequent replacements, minimizing waste generation and the environmental impact of manufacturing new pumps. Additionally, the durability of screw vacuum pumps translates into fewer maintenance requirements and less material consumption over time.

6. Waste Management:

When it comes to waste management, screw vacuum pumps offer advantages such as reduced oil disposal requirements. Unlike oil-sealed pumps that require regular oil changes and proper disposal of used oil, oil-free screw vacuum pumps eliminate this waste stream. This simplifies waste management processes and reduces the potential environmental hazards associated with oil handling and disposal.

7. Compliance with Environmental Regulations:

Many screw vacuum pump manufacturers prioritize environmental responsibility and design their products to comply with relevant environmental regulations and standards. These may include requirements for energy efficiency, emissions control, noise levels, and material restrictions. By choosing pumps from reputable manufacturers that prioritize environmental considerations, users can ensure the equipment meets or exceeds the necessary environmental compliance requirements.

In summary, environmentally friendly options for screw vacuum pumps include oil-free operation, reduced emissions, energy efficiency, noise reduction, long service life and durability, waste management advantages, and compliance with environmental regulations. By opting for these eco-friendly features, industries can minimize their environmental footprint and contribute to sustainable practices.

screw vane pump

What safety features should be considered when operating screw vacuum pumps?

When operating screw vacuum pumps, it is important to consider several safety features to ensure the protection of personnel, equipment, and the surrounding environment. Here’s a detailed explanation of the safety features that should be considered:

1. Overpressure Protection:

Screw vacuum pumps should be equipped with overpressure protection mechanisms to prevent the system from exceeding safe pressure limits. This can include pressure relief valves or rupture discs that automatically release excess pressure to avoid equipment damage or catastrophic failures. It is essential to set the pressure relief devices at appropriate levels and regularly inspect and maintain them to ensure their proper functioning.

2. Emergency Stop Button:

An emergency stop button should be easily accessible near the screw vacuum pump or within the control panel. This allows operators to quickly shut down the pump in case of emergencies, such as equipment malfunction, safety hazards, or personnel injury. The emergency stop button should be clearly labeled, well-maintained, and tested regularly to ensure its effectiveness.

3. Motor and Drive Protections:

The motor and drive system of the screw vacuum pump should be equipped with safety features to prevent overheating, overloading, and electrical faults. This can include thermal overload protection, motor temperature sensors, current monitoring devices, and short-circuit protection mechanisms. These safety features help safeguard the integrity of the motor and drive system, reducing the risk of fire, electrical hazards, and equipment damage.

4. Vacuum Level Monitoring:

Monitoring the vacuum level is crucial for safe operation. Screw vacuum pumps should be equipped with vacuum gauges or sensors to provide real-time information on the vacuum level. This allows operators to ensure that the system is operating within the desired range and helps detect any abnormal conditions or leaks. Alarms or visual indicators can also be implemented to alert operators when the vacuum level deviates from the set parameters.

5. Cooling and Ventilation:

Screw vacuum pumps generate heat during operation, and adequate cooling and ventilation systems should be in place to prevent overheating. This can include fans, heat exchangers, or cooling fins to dissipate heat effectively. Proper ventilation should be ensured to prevent the accumulation of flammable or hazardous gases. It is important to regularly inspect the cooling and ventilation systems and clean or replace components as needed to maintain optimal performance and safety.

6. Isolation and Lockout/Tagout:

Isolation valves should be installed in the suction and discharge lines of screw vacuum pumps to allow for safe maintenance, repair, or shutdown procedures. Lockout/Tagout (LOTO) procedures should be followed when performing maintenance or service activities. This involves locking and tagging the energy sources, such as electrical power or compressed air, to prevent accidental startup or release of stored energy. Adequate training and awareness of LOTO procedures are essential for personnel safety.

7. Safety Signage and Labels:

Clear and visible safety signage and labels should be placed near the screw vacuum pump and control panel to provide important safety information, warnings, and operating instructions. This includes labels for emergency stop buttons, voltage ratings, hazardous areas, and safety precautions. Safety signs should comply with relevant standards and regulations and be regularly inspected to ensure their visibility and legibility.

8. Operator Training and PPE:

Proper training should be provided to operators working with screw vacuum pumps to ensure they understand the safe operating procedures, potential hazards, and emergency protocols. Operators should also wear appropriate personal protective equipment (PPE) such as safety glasses, gloves, and hearing protection, as required by the specific operating conditions and industry regulations.

In summary, several safety features should be considered when operating screw vacuum pumps. These include overpressure protection, emergency stop buttons, motor and drive protections, vacuum level monitoring, cooling and ventilation systems, isolation and lockout/tagout procedures, safety signage, operator training, and the use of personal protective equipment. Implementing these safety features helps mitigate risks, protect personnel and equipment, and maintain a safe working environment during screw vacuum pump operation.

screw vane pump

What are the advantages of using a screw vacuum pump in industrial processes?

Using a screw vacuum pump in industrial processes offers several advantages, making it a preferred choice for various applications. Here are some key advantages:

  • High Efficiency: Screw vacuum pumps are known for their high efficiency in handling large volumes of gas or vapor. They operate based on positive displacement, ensuring consistent performance regardless of pressure differentials. This high volumetric efficiency allows for faster evacuation and quicker process cycles, increasing overall productivity.
  • Wide Operating Range: Screw vacuum pumps are capable of maintaining stable vacuum levels across a wide range of pressures. They can achieve both low and high vacuum levels, making them versatile for different industrial processes. This wide operating range enables their use in applications that require precise control of vacuum levels.
  • Continuous Operation: Screw vacuum pumps are designed for continuous operation without the need for frequent shutdowns or maintenance. They can handle demanding industrial processes that require sustained vacuum levels for extended periods. This continuous operation improves productivity and reduces downtime.
  • Reliability and Durability: Screw vacuum pumps are known for their reliability and robust construction. They are designed to withstand harsh operating conditions, including high temperatures, corrosive environments, and heavy-duty applications. Their durable design and materials ensure long service life and minimal maintenance requirements.
  • Low Noise Levels: Screw vacuum pumps generally produce lower noise levels compared to other types of vacuum pumps. This feature is particularly beneficial in industrial settings where noise reduction is important for the comfort and safety of workers.
  • Ability to Handle Wet and Dirty Gases: Screw vacuum pumps can handle wet and dirty gases effectively without compromising performance. They are designed to handle condensable vapors, particulates, and liquid carryover, which makes them suitable for applications where the gas or vapor may contain contaminants.
  • Reduced Environmental Impact: Screw vacuum pumps often incorporate energy-efficient designs, resulting in reduced power consumption and lower operating costs. Additionally, some models may include features such as oil-free operation, which eliminates the need for lubricating oil and reduces the environmental impact.
  • Application Versatility: Screw vacuum pumps find applications in a wide range of industries, including chemical processing, pharmaceuticals, food and beverage, power generation, electronics manufacturing, and more. They are capable of handling various gases and vapors, making them adaptable to different industrial processes.

Overall, the advantages of using a screw vacuum pump in industrial processes include high efficiency, wide operating range, continuous operation, reliability, low noise levels, ability to handle wet and dirty gases, reduced environmental impact, and application versatility. These factors contribute to improved productivity, cost savings, and enhanced process control, making screw vacuum pumps a popular choice in many industrial settings.

China factory Sludge Drawing Pump, Screw Pump Stator Rotor Dry Screw Vacuum Pump, Electric Sludge Pump   vacuum pump connector	China factory Sludge Drawing Pump, Screw Pump Stator Rotor Dry Screw Vacuum Pump, Electric Sludge Pump   vacuum pump connector
editor by Dream 2024-04-29