Tag Archives: quality vacuum pump

China Good quality Horizontal Water Ring Vacuum Pump Stainless Steel Vacuum Pump Is Used in Pharmaceutical Industry vacuum pump ac

Product Description

Detailed Photos

Product Description

2BV water ring vacuum pump is suitable for the extraction of gas and water vapor, the suction pressure can reach 33mbar(97% vacuum). When transformer oil is used as the working fluid (called oil-ring vacuum pump), the suction pressure can reach 6.7mbar(99.3% vacuum), which can replace reciprocating vacuum pump. When the liquid ring vacuum pump works for a long time under suction pressure close to vacuum, the cavitation protection tube should be connected to protect the pump and eliminate the cavitation erosion sound. When used as a compressor, its pressure is up to 0.26MPa.

2BV2-EX and 2BV6 water ring vacuum pumps/compressors are mainly used for removing inflammable and explosive environments, and their performance parameters are the same as those of 2BV2 and 2BV5 series.

2BV series stainless steel vacuum pump can be used in high corrosion resistance and cleanliness requirements of the occasion. 2BV series stainless steel vacuum pump flow parts: pump body, pump cover, disc, impeller material can be selected 304, 316, 316L stainless steel. (Please specify when ordering)

Product Parameters

 

Product model Maximum air volume Limit Vacuum Degree Motor power Explosion-proof grade of motor Motor Protection Level Pump speed Working fluid flow rate noise Weight
m3/min m3/h mbar(MPa) kW r.p.m L/min dB(A) kg
2BV2 060 0.45 27 33mbar 0.81 No explosion proof IP54 2840 2 62 31
2BV2 061 0.87 52 (-0.098MPa) 1.45 2840 2 65 35
2BV2 070 1.33 80   2.35 2860 2.5 66 56
2BV2 071 1.83 110   3.85 2880 4.2 72 65
2BV2 060-Ex 0.45 27   1.1 IP55 2840 2 62 39
2BV2 061-Ex 0.86 52   1.5 2840 2 65 45
2BV2 070-Ex 1.33 80   3 2860 2.5 66 66
2BV2 071-Ex 1.83 110   4 2880 4.2 72 77
2BV5 110 2.75 165   4 No explosion proof IP54 1440 6.7 63 103
2BV5 111 3.83 230   5.5 1440 8.3 68 117
2BV5 121 4.67 280   7.5 1440 10 69 149
2BV5 131 6.67 400   11 1460 15 73 205
2BV5 161 8.33 500   15 970 20 74 331
2BV6 110-EX 2.75 165   4 dIIBT4 IP55 1440 6.7 63 153
2BV6 111-EX 3.83 230   5.5 1440 8.3 68 208
2BV6 121-EX 4.66 280   7.5 1440 10 69 240
2BV6 131-EX 6.66 400   11 1460 15 73 320
2BV6 161-EX 8.33 500   15 970 20 74 446

Company Profile

ZheJiang CHINAMFG Pumps is a manufacturer with many years of experience in mining, power generation, dredging, hydraulic, irrigation, slurry transportation, construction, seawater, oil and gas transportation, solar energy system and other industries. 

We can provide you with high efficiency and energy saving of multistage pump, boiler feed pump, slurry pump, oil pump, self-priming pump, chemical pump, mining pumps, submersible pumps, sewage pumps, sea water pumps, solar pumps, fire pumps, split case pumps, irrigation pumps and other products.

Our Products sales well to Europe, America, Southeast Asia, Oceania, Middle East and Africa more than 90 countries.

Our products are widely used in mining, mineral processing, metallurgy, iron and steel, boiler water supply, oil field, chemical industry, paper making, water conservancy facilities, sewage treatment, drainage and water supply.

We have strong technical force, advanced production testing equipment, scientific management methods, stable and reliable quality products, perfect after-sales service.

We are committed to providing the highest level of customer service, competitive prices, fast delivery and comprehensive, sophisticated products. Your satisfaction is our ultimate goal!
 

Working House

Certificate

Our Services
1. Processing with supplied drawing
2. Processing with supplied samples
3. Produce all kinds of anti CHINAMFG spare parts except for pump
4. Product warranty:lifetime, no matter how long to use,if there is air hole in the flow parts,please return it,will give you a new 1 to replace.

Application

Packaging & Shipping

FAQ

1. Q: Whats the MOQ ?
A: 1 set for regular product ,the special 1 we need to discuss.
 
2. Q : What’re your payments ? 
A: For small order valve < 4000USD, our customer chose 100% T/T.
For order valve >4000USD, we can accept 30 % T/T in advance , 70 % should be paid before shipment.
 
3 . Q : How long is the deliver time ?
A : For the order in stock ,we will deliver goods at once against payment.
For the orders out of stock , the products time is 7 days for bare pump, 25 days for electric pump set or diesel engine pump set , the deliver time is base on the shipping date and your order by sea.
 
4. Q: What about the package ?
A : Standard export plywood case .
 
5.Q : How is the pump delivered to us ?
A : For urgently order, we can ship by air, for large order ,it will be delivered by sea ,vehicle or multi-modal transport.

 
6. Q : How long is the warranty ?
A: According to the inter nation standards , pump in standard operation is 1 year ,3 months for spare parts.
 
Any further questions, lets talk together.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hours Online Service
Warranty: 12-24 Months
Max.Head: >150m
Max.Capacity: >400 L/min
Driving Type: Motor
Impeller Number: Single-Stage Pump
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used in the Aerospace Sector?

Vacuum pumps indeed have various applications in the aerospace sector. Here’s a detailed explanation:

Vacuum pumps play a crucial role in several areas of the aerospace industry, supporting various processes and systems. Some of the key applications of vacuum pumps in the aerospace sector include:

1. Space Simulation Chambers: Vacuum pumps are used in space simulation chambers to replicate the low-pressure conditions experienced in outer space. These chambers are utilized for testing and validating the performance and functionality of aerospace components and systems under simulated space conditions. Vacuum pumps create and maintain the necessary vacuum environment within these chambers, allowing engineers and scientists to evaluate the behavior and response of aerospace equipment in space-like conditions.

2. Propellant Management: In space propulsion systems, vacuum pumps are employed for propellant management. They help in the transfer, circulation, and pressurization of propellants, such as liquid rocket fuels or cryogenic fluids, in both launch vehicles and spacecraft. Vacuum pumps assist in creating the required pressure differentials for propellant flow and control, ensuring efficient and reliable operation of propulsion systems.

3. Environmental Control Systems: Vacuum pumps are utilized in the environmental control systems of aircraft and spacecraft. These systems are responsible for maintaining the desired atmospheric conditions, including temperature, humidity, and cabin pressure, to ensure the comfort, safety, and well-being of crew members and passengers. Vacuum pumps are used to regulate and control the cabin pressure, facilitating the circulation of fresh air and maintaining the desired air quality within the aircraft or spacecraft.

4. Satellite Technology: Vacuum pumps find numerous applications in satellite technology. They are used in the fabrication and testing of satellite components, such as sensors, detectors, and electronic devices. Vacuum pumps help create the necessary vacuum conditions for thin film deposition, surface treatment, and testing processes, ensuring the performance and reliability of satellite equipment. Additionally, vacuum pumps are employed in satellite propulsion systems to manage propellants and provide thrust for orbital maneuvers.

5. Avionics and Instrumentation: Vacuum pumps are involved in the production and testing of avionics and instrumentation systems used in aerospace applications. They facilitate processes such as thin film deposition, vacuum encapsulation, and vacuum drying, ensuring the integrity and functionality of electronic components and circuitry. Vacuum pumps are also utilized in vacuum leak testing, where they help create a vacuum environment to detect and locate any leaks in aerospace systems and components.

6. High Altitude Testing: Vacuum pumps are used in high altitude testing facilities to simulate the low-pressure conditions encountered at high altitudes. These testing facilities are employed for evaluating the performance and functionality of aerospace equipment, such as engines, materials, and structures, under simulated high altitude conditions. Vacuum pumps create and control the required low-pressure environment, allowing engineers and researchers to assess the behavior and response of aerospace systems in high altitude scenarios.

7. Rocket Engine Testing: Vacuum pumps are crucial in rocket engine testing facilities. They are utilized to evacuate and maintain the vacuum conditions in engine test chambers or nozzles during rocket engine testing. By creating a vacuum environment, these pumps simulate the conditions experienced by rocket engines in the vacuum of space, enabling accurate testing and evaluation of engine performance, thrust levels, and efficiency.

It’s important to note that aerospace applications often require specialized vacuum pumps capable of meeting stringent requirements, such as high reliability, low outgassing, compatibility with propellants or cryogenic fluids, and resistance to extreme temperatures and pressures.

In summary, vacuum pumps are extensively used in the aerospace sector for a wide range of applications, including space simulation chambers, propellant management, environmental control systems, satellite technology, avionics and instrumentation, high altitude testing, and rocket engine testing. They contribute to the development, testing, and operation of aerospace equipment, ensuring optimal performance, reliability, and safety.

vacuum pump

What Is the Role of Vacuum Pumps in Pharmaceutical Manufacturing?

Vacuum pumps play a crucial role in various aspects of pharmaceutical manufacturing. Here’s a detailed explanation:

Vacuum pumps are extensively used in pharmaceutical manufacturing processes to support a range of critical operations. Some of the key roles of vacuum pumps in pharmaceutical manufacturing include:

1. Drying and Evaporation: Vacuum pumps are employed in drying and evaporation processes within the pharmaceutical industry. They facilitate the removal of moisture or solvents from pharmaceutical products or intermediates. Vacuum drying chambers or evaporators utilize vacuum pumps to create low-pressure conditions, which lower the boiling points of liquids, allowing them to evaporate at lower temperatures. By applying vacuum, moisture or solvents can be efficiently removed from substances such as active pharmaceutical ingredients (APIs), granules, powders, or coatings, ensuring the desired product quality and stability.

2. Filtration and Filtrate Recovery: Vacuum pumps are used in filtration processes for the separation of solid-liquid mixtures. Vacuum filtration systems typically employ a filter medium, such as filter paper or membranes, to retain solids while allowing the liquid portion to pass through. By applying vacuum to the filtration apparatus, the liquid is drawn through the filter medium, leaving behind the solids. Vacuum pumps facilitate efficient filtration, speeding up the process and improving product quality. Additionally, vacuum pumps can aid in filtrate recovery by collecting and transferring the filtrate for further processing or reuse.

3. Distillation and Purification: Vacuum pumps are essential in distillation and purification processes within the pharmaceutical industry. Distillation involves the separation of liquid mixtures based on their different boiling points. By creating a vacuum environment, vacuum pumps lower the boiling points of the components, allowing them to vaporize and separate more easily. This enables efficient separation and purification of pharmaceutical compounds, including the removal of impurities or the isolation of specific components. Vacuum pumps are utilized in various distillation setups, such as rotary evaporators or thin film evaporators, to achieve precise control over the distillation conditions.

4. Freeze Drying (Lyophilization): Vacuum pumps are integral to the freeze drying process, also known as lyophilization. Lyophilization is a dehydration technique that involves the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. Vacuum pumps create a low-pressure environment in freeze drying chambers, allowing the frozen product to undergo sublimation. During sublimation, the frozen water or solvent directly transitions from the solid phase to the vapor phase, bypassing the liquid phase. Vacuum pumps facilitate efficient and controlled sublimation, leading to the production of stable, shelf-stable pharmaceutical products with extended shelf life.

5. Tablet and Capsule Manufacturing: Vacuum pumps are utilized in tablet and capsule manufacturing processes. They are involved in the creation of vacuum within tablet presses or capsule filling machines. By applying vacuum, the air is removed from the die cavity or capsule cavity, allowing for the precise filling of powders or granules. Vacuum pumps contribute to the production of uniform and well-formed tablets or capsules by ensuring accurate dosing and minimizing air entrapment, which can affect the final product quality.

6. Sterilization and Decontamination: Vacuum pumps are employed in sterilization and decontamination processes within the pharmaceutical industry. Autoclaves and sterilizers utilize vacuum pumps to create a vacuum environment before introducing steam or chemical sterilants. By removing air or gases from the chamber, vacuum pumps assist in achieving effective sterilization or decontamination by enhancing the penetration and distribution of sterilants. Vacuum pumps also aid in the removal of sterilants and residues after the sterilization process is complete.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, dry screw pumps, or liquid ring pumps, may be utilized in pharmaceutical manufacturing depending on the specific requirements of the process and the compatibility with pharmaceutical products.

In summary, vacuum pumps play a vital role in various stages of pharmaceutical manufacturing, including drying and evaporation, filtration and filtrate recovery, distillation and purification, freeze drying (lyophilization), tablet and capsule manufacturing, as well as sterilization and decontamination. By enabling efficient and controlled processes, vacuum pumps contribute to the production of high-quality pharmaceutical products, ensuring the desired characteristics, stability, and safety.

vacuum pump

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

3. Scroll Vacuum Pumps:

– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

4. Piston Vacuum Pumps:

– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

5. Turbo Molecular Vacuum Pumps:

– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

6. Diffusion Vacuum Pumps:

– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

7. Cryogenic Vacuum Pumps:

– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

China Good quality Horizontal Water Ring Vacuum Pump Stainless Steel Vacuum Pump Is Used in Pharmaceutical Industry   vacuum pump acChina Good quality Horizontal Water Ring Vacuum Pump Stainless Steel Vacuum Pump Is Used in Pharmaceutical Industry   vacuum pump ac
editor by Dream 2024-04-19

China high quality Chemical Vacuum Diaphragm Pump Air Operate Double Diaphragm Pump vacuum pump electric

Product Description

Air operated double diaphragm pump

The BQG series of mine diaphragm pumps produced by our company adopts, absorbs and improves the most advanced production technology and technology of pneumatic diaphragm pumps in the world. This product is specially designed for coal mines and has traditional submersible electric pumps, mud pumps, impurity pumps, All the functions of the flexible shaft pump are a revolution of the traditional mine water pump. The key is to completely solve the safety problem of traditional water pump,which can provide high delivery speed even under low air pressure and is compatible with a wide range of materials, and has an anti-stall design, modular air motor / fluid part.

They can be applied in underground mines to discharge clean water or sewage containing CZPT particles (volume concentration less than 2%), and also be used in non-coal mines and other occasions with similar conveying media.

Air operated double diaphragm pump working environment conditions

1. Compressed air for power use, the pressure should be in the range of 0.2 ~ 0.7mpa;

2. The temperature of the conveying medium shall not exceed 40ºC;

3. The PH of the conveying medium is in the range of 4 ~ 10;

4. The maximum diameter of CZPT particles shall not exceed 6 ~ 9mm, and the volume concentration shall not exceed 2%;

5. Ambient temperature: -20ºC ~ 50ºC;

6. Ambient humidity: ≤95% (when ambient temperature is +25ºC);

7. Atmospheric pressure: 80kPa ~ 106kPa;

8. It is suitable for coal mine underground coal dust and methane explosive gas danger place, but does not destroy the insulation corrosive gas place.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Available
Warranty: 3 Years
Transport Package: Normal Packaging
Samples:
US$ 460/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

Vacuum Pump

Types of vacuum pumps

A vacuum pump is a device that draws gas molecules from a sealed volume and leaves a partial vacuum in its wake. Its job is to create a relative vacuum within a specific volume or volume. There are many types of vacuum pumps, including centrifugal, screw and diaphragm.

Forward centrifugal pump

Positive displacement centrifugal vacuum pumps are one of the most commonly used pump types in the oil and gas industry. Their efficiency is limited to a range of materials and can handle relatively high solids concentrations. However, using these pumps has some advantages over other types of pumps.
Positive displacement pumps have an enlarged cavity on the suction side and a reduced cavity on the discharge side. This makes them ideal for applications involving high viscosity fluids and high pressures. Their design makes it possible to precisely measure and control the amount of liquid pumped. Positive displacement pumps are also ideal for applications requiring precise metering.
Positive displacement pumps are superior to centrifugal pumps in several ways. They can handle higher viscosity materials than centrifuges. These pumps also operate at lower speeds than centrifugal pumps, which makes them more suitable for certain applications. Positive displacement pumps are also less prone to wear.
Positive displacement vacuum pumps operate by drawing fluid into a chamber and expanding it to a larger volume, then venting it to the atmosphere. This process happens several times per second. When maximum expansion is reached, the intake valve closes, the exhaust valve opens, and fluid is ejected. Positive displacement vacuum pumps are highly efficient and commonly used in many industries.

Self-priming centrifugal pump

Self-priming centrifugal pumps are designed with a water reservoir to help remove air from the pump. This water is then recirculated throughout the pump, allowing the pump to run without air. The water reservoir can be located above or in front of the impeller. The pump can then reserve water for the initial start.
The casing of the pump contains an increasingly larger channel forming a cavity retainer and semi-double volute. When water enters the pump through channel A, it flows back to the impeller through channels B-C. When the pump is started a second time, the water in the pump body will be recirculated back through the impeller. This recycling process happens automatically.
These pumps are available in a variety of models and materials. They feature special stainless steel castings that are corrosion and wear-resistant. They can be used in high-pressure applications and their design eliminates the need for inlet check valves and intermediate valves. They can also be equipped with long intake pipes, which do not require activation.
Self-priming centrifugal pumps are designed to run on their own, but there are some limitations. They cannot operate without a liquid source. A foot valve or external liquid source can help you start the self-priming pump.

Screw Pump

The mechanical and thermal characteristics of a screw vacuum pump are critical to its operation. They feature a small gap between the rotor and stator to minimize backflow and thermal growth. Temperature is a key factor in their performance, so they have an internal cooling system that uses water that circulates through the pump’s stator channels. The pump is equipped with a thermostatically controlled valve to regulate the water flow. Also includes a thermostatic switch for thermal control.
Screw vacuum pumps work by trapping gas in the space between the rotor and the housing. The gas is then moved to the exhaust port, where it is expelled at atmospheric pressure. The tapered discharge end of the screw further reduces the volume of gas trapped in the chamber. These two factors allow the pump to work efficiently and safely.
Screw vacuum pumps are designed for a variety of applications. In some applications, the pump needs to operate at very low pressures, such as when pumping large volumes of air. For this application, the SCREWLINE SP pump is ideal. Their low discharge temperature and direct pumping path ensure industrial process uptime. These pumps also feature non-contact shaft seals to reduce mechanical wear. Additionally, they feature a special cantilever bearing arrangement to eliminate potential sources of bearing failure and lubrication contamination.
Screw vacuum pumps use an air-cooled screw to generate a vacuum. They are compact, and clean, and have a remote monitoring system with built-in intelligence. By using the app, users can monitor pump performance remotely.
Vacuum Pump

Diaphragm Pump

Diaphragm vacuum pumps are one of the most common types of vacuum pumps found in laboratories and manufacturing facilities. The diaphragm is an elastomeric membrane held in place around the outer diameter. While it is not possible to seal a diaphragm vacuum pump, there are ways to alleviate the problems associated with this design.
Diaphragm vacuum pumps are versatile and can be used in a variety of clean vacuum applications. These pumps are commercially available with a built-in valve system, but they can also be modified to include one. Because diaphragm pumps are so versatile, it’s important to choose the right type for the job. Understanding how pumps work will help you match the right pump to the right application.
Diaphragm vacuum pumps offer a wide range of advantages, including an extremely long service life. Most diaphragm pumps can last up to ten thousand hours. However, they may be inefficient for processes that require deep vacuum, in which case alternative technologies may be required. Additionally, due to the physics of diaphragm pumps, the size of these pumps may be limited. Also, they are not suitable for high-speed pumping.
Diaphragm vacuum pumps are a versatile subset of laboratory pumps. They are popular for their oil-free construction and low maintenance operation. They are available in a variety of styles and have many optional features. In addition to low maintenance operation, they are chemically resistant and can be used with a variety of sample types. However, diaphragm pumps tend to have lower displacements than other vacuum pumps.

Atmospheric pressure is a key factor in a vacuum pump system

Atmospheric pressure is the pressure created by the collision of air molecules. The more they collide, the greater the pressure. This applies to pure gases and mixtures. When you measure atmospheric pressure, the pressure gauge reads about 14.7 psia. The higher the pressure, the greater the force on the gas molecules.
The gas entering the vacuum pump system is below atmospheric pressure and may contain entrained liquids. The mechanism of this process can be explained by molecular kinetic energy theory. The theory assumes that gas molecules in the atmosphere have high velocities. The resulting gas molecules will then start moving in random directions, colliding with each other and creating pressure on the walls of the vacuum vessel.
Atmospheric pressure is a critical factor in a vacuum pump system. A vacuum pump system is useless without proper atmospheric pressure measurement. The pressure in the atmosphere is the total pressure of all gases, including nitrogen and oxygen. Using total pressure instead of partial pressure can cause problems. The thermal conductivity of various gases varies widely, so working at full pressure can be dangerous.
When choosing a vacuum pump, consider its operating range. Some pumps operate at low atmospheric pressure, while others are designed to operate at high or ultra-high pressure. Different types of pumps employ different technologies that enhance their unique advantages.
Vacuum Pump

The screw pump is less efficient in pumping gases with smaller molecular weight

Vacuuming requires a high-quality pump. This type of pump must be able to pump gas of high purity and very low pressure. Screw pumps can be used in laboratory applications and are more efficient when pumping small molecular weight gases. Chemical resistance is critical to pump life. Chemical resistant materials are also available. Chemically resistant wetted materials minimize wear.
Gear pumps are more efficient than screw pumps, but are less efficient when pumping lower molecular weight gases. Gear pumps also require a larger motor to achieve the same pumping capacity. Compared to gear pumps, progressive cavity pumps also have lower noise levels and longer service life. In addition, gear pumps have a large footprint and are not suitable for tight spaces.
Progressive cavity pumps have two or three screws and a housing and side cover. They are also equipped with gears and bearings. Their mechanical design allows them to operate in high pressure environments with extremely low noise. The progressive cavity pump is a versatile pump that can be used in a variety of applications.
Dry screw compressors have different aspect ratios and can operate at high and low pressures. The maximum allowable differential pressure for screw compressors ranges from 0.4 MPa for 3/5 rotors to 1.5 MPa for 4/6 rotors. These numbers need to be determined on a case-by-case basis.

China high quality Chemical Vacuum Diaphragm Pump Air Operate Double Diaphragm Pump   vacuum pump electricChina high quality Chemical Vacuum Diaphragm Pump Air Operate Double Diaphragm Pump   vacuum pump electric
editor by Dream 2024-04-17

China Custom China High Quality CHINAMFG Vacuum Pump vacuum pump oil near me

Product Description

china high quality CHINAMFG vacuum pump

With Automatic high speed flow and compensation function   under the setting pressure.Comparing with fixed displacement vane pump,it has lower consumption and heat radiation;
Stable and noiseless in operation,especially suitable for machine tool and accord to requirements of housed activities.
It contains mechanical pressure adjustment;For an arbitrary choice

Specifications:
1.CE certificate
2.LVD certificate
3.For air conditionin
4.Small,light,nicelooking.

Used for:
The vacuum pump is mainly applied in many fields, such as refrigeration maintain, printing machine, medical equipment, vacuum packing, gas analyze and thermoplastic molding ect.
Exact indication of internal system pressure on the vacuum gauge. The vacuum gauge can equip on all models of vacuum pump.

Technical parameters:

Item NO. VP115(VP-1) VP125(VP-1.5) VP135(VP-2) VP145(VP-2.5) VP160 VP180 VP1100
(VP-3) (VP-4) (VP-5)
Flow Rate 50Hz 1.5CFM 2.5CFM 3.5CFM 4.5CFM 6CFM 8CFM 10CFM
42 L/min 70 L/min 100 L/min 128 L/min 170 L/min 226 L/min 283 L/min
60Hz 1.8CFM 3CFM 4CFM 5CFM 7CFM 9CFM 12CFM
50 L/min 84 L/min 114 L/min 142 L/min 198 L/min 254 L/min 340 L/min
Ultimate vacuum   5Pa 5Pa 5Pa 5Pa 5Pa 5Pa 5Pa
  100 microns 100 microns 100 microns 100 microns 100 microns 100 microns 100 microns
Power 1/4HP 1/4HP 1/3HP 1/3HP 1/2HP 3/4HP 1HP
Inlet Port 1/4″Flare 1/4″Flare 1/4″Flare 1/4″Flare 1/4″&3/8″Flare 1/4″&3/8″Flare 1/4″&3/8″Flare
Oil Capacity 280ml 240ml 350ml 350ml 450ml 600ml 750ml
Dimensions(mm) 260x122x220 260x122x220 270x122x220 270x122x220 320x134x235 370x140x250 390x140x250
Weight 4.6kg 5kg 5.5kg 6kg 6kg 14kg 14.5kg

Pump oil:

All plugs reference of vacuum pump:

Package:

FAQ
Q. What are the payment terms?
 A. 30% deposit CHINAMFG confirmation of order and 70% balance TT before shipment.
 
Q. Can the air compressor be customized according to preference?
A. We welcome all request and customization.
 
Q. Do the factory offer OEM products?
A. Yes we can do OEM if our clients authorized us the copyrights.
 
Q. Are spare parts readily available?
Spare parts are prepared . We stock all spare parts and will courier in urgent cases. Parts are readily available and affordable.
 

Related product:

     

Advanced One-Stop Purchasing Service-In Air-conditioning And Refrigeration Industry

Main product
Copper Tube — Aluminum Tube Coil
Brass Pipe — Steel Sheet
Fan Motor — Compressor– Condenser Unit
Valves Gauge– Hand tools –Vacuum Pump– PE Tape

 
Contact:
Aimee Chen
HangZhou Andwin Refrigeration Equipment Co.,Ltd
Add:No.91 Xihu (West Lake) Dis. Road, New District, HangZhou, ZheJiang , China.

 
    
  
  
 

    
  
  
 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Vacuum
Work Function: Maintain the Pump
Working Conditions: Dry
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

vacuum pump

What Are the Advantages of Using Oil-Sealed Vacuum Pumps?

Oil-sealed vacuum pumps offer several advantages in various applications. Here’s a detailed explanation:

1. High Vacuum Performance: Oil-sealed vacuum pumps are known for their ability to achieve high levels of vacuum. They can create and maintain deep vacuum levels, making them suitable for applications that require a low-pressure environment. The use of oil as a sealing and lubricating medium helps in achieving efficient vacuum performance.

2. Wide Operating Range: Oil-sealed vacuum pumps have a wide operating range, allowing them to handle a broad spectrum of vacuum levels. They can operate effectively in both low-pressure and high-vacuum conditions, making them versatile for different applications across various industries.

3. Efficient and Reliable Operation: These pumps are known for their reliability and consistent performance. The oil-sealed design provides effective sealing, preventing air leakage and maintaining a stable vacuum level. They are designed to operate continuously for extended periods without significant performance degradation, making them suitable for continuous industrial processes.

4. Contamination Handling: Oil-sealed vacuum pumps are effective in handling certain types of contaminants that may be present in the process gases or air being evacuated. The oil acts as a barrier, trapping and absorbing certain particulates, moisture, and chemical vapors, preventing them from reaching the pump mechanism. This helps protect the pump internals from potential damage and contributes to the longevity of the pump.

5. Thermal Stability: The presence of oil in these pumps helps in dissipating heat generated during operation, contributing to their thermal stability. The oil absorbs and carries away heat, preventing excessive temperature rise within the pump. This thermal stability allows for consistent performance even during prolonged operation and helps protect the pump from overheating.

6. Noise Reduction: Oil-sealed vacuum pumps generally operate at lower noise levels compared to other types of vacuum pumps. The oil acts as a noise-damping medium, reducing the noise generated by the moving parts and the interaction of gases within the pump. This makes them suitable for applications where noise reduction is desired, such as laboratory environments or noise-sensitive industrial settings.

7. Versatility: Oil-sealed vacuum pumps are versatile and can handle a wide range of gases and vapors. They can effectively handle both condensable and non-condensable gases, making them suitable for diverse applications in industries such as chemical processing, pharmaceuticals, food processing, and research laboratories.

8. Cost-Effective: Oil-sealed vacuum pumps are often considered cost-effective options for many applications. They generally have a lower initial cost compared to some other types of high-vacuum pumps. Additionally, the maintenance and operating costs are relatively lower, making them an economical choice for industries that require reliable vacuum performance.

9. Simplicity and Ease of Maintenance: Oil-sealed vacuum pumps are relatively simple in design and easy to maintain. Routine maintenance typically involves monitoring oil levels, changing the oil periodically, and inspecting and replacing worn-out parts as necessary. The simplicity of maintenance procedures contributes to the overall cost-effectiveness and ease of operation.

10. Compatibility with Other Equipment: Oil-sealed vacuum pumps are compatible with various process equipment and systems. They can be easily integrated into existing setups or used in conjunction with other vacuum-related equipment, such as vacuum chambers, distillation systems, or industrial process equipment.

These advantages make oil-sealed vacuum pumps a popular choice in many industries where reliable, high-performance vacuum systems are required. However, it’s important to consider specific application requirements and consult with experts to determine the most suitable type of vacuum pump for a particular use case.

vacuum pump

How Do Vacuum Pumps Impact the Quality of 3D Printing?

Vacuum pumps play a significant role in improving the quality and performance of 3D printing processes. Here’s a detailed explanation:

3D printing, also known as additive manufacturing, is a process of creating three-dimensional objects by depositing successive layers of material. Vacuum pumps are utilized in various aspects of 3D printing to enhance the overall quality, accuracy, and reliability of printed parts. Here are some key ways in which vacuum pumps impact 3D printing:

1. Material Handling and Filtration: Vacuum pumps are used in 3D printing systems to handle and control the flow of materials. They create the necessary suction force to transport powdered materials, such as polymers or metal powders, from storage containers to the printing chamber. Vacuum systems also assist in filtering and removing unwanted particles or impurities from the material, ensuring the purity and consistency of the feedstock. This helps to prevent clogging or contamination issues during the printing process.

2. Build Plate Adhesion: Proper adhesion of the printed object to the build plate is crucial for achieving dimensional accuracy and preventing warping or detachment during the printing process. Vacuum pumps are employed to create a vacuum environment or suction force that securely holds the build plate and ensures firm adhesion between the first layer of the printed object and the build surface. This promotes stability and minimizes the risk of layer shifting or deformation during the printing process.

3. Material Drying: Many 3D printing materials, such as filament or powdered polymers, can absorb moisture from the surrounding environment. Moisture-contaminated materials can lead to poor print quality, reduced mechanical properties, or defects in the printed parts. Vacuum pumps with integrated drying capabilities can be employed to create a low-pressure environment, effectively removing moisture from the materials before they are used in the printing process. This ensures the dryness and quality of the materials, resulting in improved print outcomes.

4. Resin Handling in Stereolithography (SLA): In SLA 3D printing, a liquid resin is selectively cured using light sources to create the desired object. Vacuum pumps are utilized to facilitate the resin handling process. They can be employed to degas or remove air bubbles from the liquid resin, ensuring a smooth and bubble-free flow during material dispensing. This helps to prevent defects and imperfections caused by trapped air or bubbles in the final printed part.

5. Enclosure Pressure Control: Some 3D printing processes, such as selective laser sintering (SLS) or binder jetting, require the printing chamber to be maintained at a specific pressure or controlled atmosphere. Vacuum pumps are used to create a controlled low-pressure or vacuum environment within the printing chamber, enabling precise pressure regulation and maintaining the desired conditions for optimal printing results. This control over the printing environment helps to prevent oxidation, improve material flow, and enhance the quality and consistency of printed parts.

6. Post-Processing and Cleaning: Vacuum pumps can also aid in post-processing steps and cleaning of 3D printed parts. For instance, in processes like support material removal or surface finishing, vacuum systems can assist in the removal of residual support structures or excess powder from printed objects. They can also be employed in vacuum-based cleaning methods, such as vapor smoothing, to achieve smoother surface finishes and enhance the aesthetics of the printed parts.

7. System Maintenance and Filtration: Vacuum pumps used in 3D printing systems require regular maintenance and proper filtration to ensure their efficient and reliable operation. Effective filtration systems within the vacuum pumps help to remove any contaminants or particles generated during printing, preventing their circulation and potential deposition on the printed parts. This helps to maintain the cleanliness of the printing environment and minimize the risk of defects or impurities in the final printed objects.

In summary, vacuum pumps have a significant impact on the quality of 3D printing. They contribute to material handling and filtration, build plate adhesion, material drying, resin handling in SLA, enclosure pressure control, post-processing and cleaning, as well as system maintenance and filtration. By utilizing vacuum pumps in these critical areas, 3D printing processes can achieve improved accuracy, dimensional stability, material quality, and overall print quality.

vacuum pump

What Industries Commonly Rely on Vacuum Pump Technology?

Vacuum pump technology finds applications in various industries where creating and controlling vacuum or low-pressure environments is crucial. Here’s a detailed explanation:

1. Manufacturing and Production: Vacuum pumps are extensively used in manufacturing and production processes across multiple industries. They are employed for tasks such as vacuum molding, vacuum packaging, vacuum degassing, vacuum drying, and vacuum distillation. Industries like automotive, aerospace, electronics, pharmaceuticals, and food processing rely on vacuum pump technology to achieve precise and controlled manufacturing conditions.

2. Chemical and Pharmaceutical: The chemical and pharmaceutical industries heavily rely on vacuum pumps for numerous applications. These include solvent recovery, vacuum filtration, vacuum drying, distillation, crystallization, and evaporation. Vacuum pumps enable these industries to carry out critical processes under reduced pressure, ensuring efficient separation, purification, and synthesis of various chemical compounds and pharmaceutical products.

3. Semiconductor and Electronics: The semiconductor and electronics industries extensively use vacuum pumps for manufacturing microchips, electronic components, and electronic devices. Vacuum pumps are crucial in processes such as physical vapor deposition (PVD), chemical vapor deposition (CVD), etching, ion implantation, and sputtering. These processes require controlled vacuum conditions to ensure precise deposition, surface modification, and contamination-free manufacturing.

4. Research and Development: Vacuum pump technology is integral to research and development activities across scientific disciplines. It supports experiments and investigations in fields such as physics, chemistry, materials science, biology, and environmental science. Vacuum pumps facilitate processes like freeze drying, vacuum distillation, vacuum evaporation, vacuum spectroscopy, and creating controlled atmospheric conditions for studying various phenomena.

5. Food and Beverage: The food and beverage industry relies on vacuum pumps for packaging and preservation purposes. Vacuum sealing is used to extend the shelf life of food products by removing air and creating a vacuum-sealed environment that inhibits spoilage and maintains freshness. Vacuum pumps are also used in processes like freeze drying, vacuum concentration, and vacuum cooling.

6. Oil and Gas: In the oil and gas industry, vacuum pumps play a role in various applications. They are used for crude oil vacuum distillation, vacuum drying, vapor recovery, gas compression, and gas stripping processes. Vacuum pumps help maintain optimal conditions during oil refining, gas processing, and petrochemical manufacturing.

7. Environmental and Waste Management: Vacuum pumps are employed in environmental and waste management applications. They are used for tasks such as soil vapor extraction, groundwater remediation, landfill gas recovery, and wastewater treatment. Vacuum pumps facilitate the removal and containment of gases, vapors, and pollutants, contributing to environmental protection and sustainable waste management.

8. Medical and Healthcare: The medical and healthcare sectors utilize vacuum pumps for various purposes. They are used in medical equipment such as vacuum-assisted wound therapy devices, vacuum-based laboratory analyzers, and vacuum suction systems in hospitals and clinics. Vacuum pumps are also used in medical research, pharmaceutical production, and medical device manufacturing.

9. Power Generation: Vacuum pumps play a role in power generation industries, including nuclear power plants and thermal power plants. They are used for steam condensation, turbine blade cooling, vacuum drying during transformer manufacturing, and vacuum systems for testing and maintenance of power plant equipment.

10. HVAC and Refrigeration: The HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries rely on vacuum pumps for system installation, maintenance, and repair. Vacuum pumps are used to evacuate air and moisture from refrigerant lines and HVAC systems, ensuring optimal system performance and efficiency.

These are just a few examples of industries that commonly rely on vacuum pump technology. The versatility and wide-ranging applications of vacuum pumps make them indispensable tools across numerous sectors, enabling precise control over vacuum conditions, efficient manufacturing processes, and scientific investigations.

China Custom China High Quality CHINAMFG Vacuum Pump   vacuum pump oil near me		China Custom China High Quality CHINAMFG Vacuum Pump   vacuum pump oil near me
editor by CX 2024-04-17

China high quality China Factory Screw Vacuum Pump for Chemical vacuum pump for ac

Product Description

                                       EXTERIOR DESIGN                                                                INTERIOR DESIGN

ZheJiang CHINAMFG Machinery Manufacturing Co. , Ltd. is located in HangZhou, ZheJiang .CHINAMFG is a comprehensive screw air compressor

manufacturer that engaged in R & D, design, production and sales. It has a plant of 20,000 square meters, including a large production workshop,

a comprehensive first-class exhibition hall and a testing laboratory.

CHINAMFG has excellent mechanical engineering designers, an experienced staff team and a professional management team. The production

concept focuses on energy-saving and is committed to perfecting and improving the technological process in order to get the core technology

of super frequency energy-saving, achieving the characteristics of mute, durability, power saving and safety.

The company has 9 series of products with multiple models. Including Fixed speed air compressor, PM VSD air compressor, PM VSD

two-stage air compressor, 4-in-1 air compressor, Oil free water lubrcating air compressor, Diesel portable screw air compressor, Electric

portable screw air compressor, Air dryer, Adsorption machine and the matching spare parts. CHINAMFG adheres to the business philosophy of

cooperation and mutual benefit to provide a one-stop service for every customer!

CHINAMFG air compressors not only cover the domestic market but also are exported to more than 20 countries and regions such as South

Africa, Australia, Thailand, Russia, Argentina, Canada and so on. CHINAMFG products have won a good reputation from users for their excellent

quality and style. The company has always adhered to the concept of quality first, service first and dedication to providing every customer with

excellent products and meticulous after-sales service!

CHINAMFG warmly welcome customers to visit our factory and establish a wide range of cooperation!

Frequency Asked Question:

Q1: Are you factory or trade company?  
A1: We are factory.

Q2: What the exactly address of your factory? 
A2: Our Factory is Located in Xihu (West Lake) Dis. CountyHangZhou CityZheJiang  Province, China.

Q3: Will you provide spare parts of your products? 
A3: Yes, We provide all parts to customer, so you can do repair or maintenance without trouble.

Q4: Can you accept OEM orders? 
A4: Yes, with professional design team, OEM orders are highly welcome.

Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products.380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.

Q6: Warranty terms of your machine?
A6Two years warranty for the machine and technical support always according to your needs.

Q7: Can you provide the best price?
A7:According to your order, we will provide you the best price. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hours
Warranty: 2 Year, 2 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Customization:
Available

|

screw vane pump

What is the typical lifespan of a screw vacuum pump?

The typical lifespan of a screw vacuum pump can vary depending on various factors, including the quality of the pump, maintenance practices, operating conditions, and usage patterns. Here’s a detailed explanation of the factors that can influence the lifespan of a screw vacuum pump:

1. Quality and Design:

The quality and design of the screw vacuum pump play a significant role in its lifespan. High-quality pumps manufactured by reputable companies tend to have longer lifespans compared to lower-quality or poorly designed pumps. Pumps with robust construction, durable materials, and reliable components are more likely to withstand the rigors of operation and have an extended service life.

2. Maintenance Practices:

Proper maintenance is crucial for maximizing the lifespan of a screw vacuum pump. Regular maintenance activities, such as lubrication, inspection, and cleaning, help ensure the pump operates optimally and minimizes wear and tear. Following the manufacturer’s recommended maintenance schedule, using the correct lubricants, and addressing any issues promptly can significantly extend the pump’s lifespan.

3. Operating Conditions:

The operating conditions in which the screw vacuum pump is used can impact its lifespan. Factors such as temperature, pressure, humidity, and the presence of corrosive or abrasive substances can affect the pump’s performance and longevity. Pumps designed for specific operating conditions or equipped with protective measures, such as coatings or corrosion-resistant materials, may have an extended lifespan in challenging environments.

4. Usage Patterns:

The usage patterns of the screw vacuum pump also influence its lifespan. Factors such as duty cycle, operating hours, and load variations can impact the wear and tear on the pump’s components. Pumps subjected to continuous or heavy-duty usage may experience more significant wear and have a shorter lifespan compared to pumps used intermittently or under lighter loads.

5. Maintenance and Repair History:

The maintenance and repair history of the screw vacuum pump can provide insights into its lifespan. Pumps that have been well-maintained, with regular servicing, timely repairs, and component replacements as needed, are more likely to have longer lifespans. Conversely, pumps that have a history of neglected maintenance or frequent breakdowns may have reduced lifespans.

6. Technological Advancements:

The ongoing advancements in screw vacuum pump technology can also impact the lifespan of pumps. Newer generations of pumps may incorporate improved designs, materials, and components that enhance reliability and durability. Pumps featuring advanced monitoring and diagnostic capabilities can help detect and address potential issues before they escalate, thus prolonging the pump’s lifespan.

It is important to note that the typical lifespan of a screw vacuum pump can range from several years to several decades, depending on the aforementioned factors. While some pumps may require replacement after a decade or so of service, well-maintained pumps operating in favorable conditions can exceed 20 years of reliable operation.

Ultimately, to determine the specific lifespan of a screw vacuum pump, it is advisable to consult the manufacturer’s guidelines, consider the operating conditions, and implement a proactive maintenance program to ensure optimal performance and longevity.

screw vane pump

What safety features should be considered when operating screw vacuum pumps?

When operating screw vacuum pumps, it is important to consider several safety features to ensure the protection of personnel, equipment, and the surrounding environment. Here’s a detailed explanation of the safety features that should be considered:

1. Overpressure Protection:

Screw vacuum pumps should be equipped with overpressure protection mechanisms to prevent the system from exceeding safe pressure limits. This can include pressure relief valves or rupture discs that automatically release excess pressure to avoid equipment damage or catastrophic failures. It is essential to set the pressure relief devices at appropriate levels and regularly inspect and maintain them to ensure their proper functioning.

2. Emergency Stop Button:

An emergency stop button should be easily accessible near the screw vacuum pump or within the control panel. This allows operators to quickly shut down the pump in case of emergencies, such as equipment malfunction, safety hazards, or personnel injury. The emergency stop button should be clearly labeled, well-maintained, and tested regularly to ensure its effectiveness.

3. Motor and Drive Protections:

The motor and drive system of the screw vacuum pump should be equipped with safety features to prevent overheating, overloading, and electrical faults. This can include thermal overload protection, motor temperature sensors, current monitoring devices, and short-circuit protection mechanisms. These safety features help safeguard the integrity of the motor and drive system, reducing the risk of fire, electrical hazards, and equipment damage.

4. Vacuum Level Monitoring:

Monitoring the vacuum level is crucial for safe operation. Screw vacuum pumps should be equipped with vacuum gauges or sensors to provide real-time information on the vacuum level. This allows operators to ensure that the system is operating within the desired range and helps detect any abnormal conditions or leaks. Alarms or visual indicators can also be implemented to alert operators when the vacuum level deviates from the set parameters.

5. Cooling and Ventilation:

Screw vacuum pumps generate heat during operation, and adequate cooling and ventilation systems should be in place to prevent overheating. This can include fans, heat exchangers, or cooling fins to dissipate heat effectively. Proper ventilation should be ensured to prevent the accumulation of flammable or hazardous gases. It is important to regularly inspect the cooling and ventilation systems and clean or replace components as needed to maintain optimal performance and safety.

6. Isolation and Lockout/Tagout:

Isolation valves should be installed in the suction and discharge lines of screw vacuum pumps to allow for safe maintenance, repair, or shutdown procedures. Lockout/Tagout (LOTO) procedures should be followed when performing maintenance or service activities. This involves locking and tagging the energy sources, such as electrical power or compressed air, to prevent accidental startup or release of stored energy. Adequate training and awareness of LOTO procedures are essential for personnel safety.

7. Safety Signage and Labels:

Clear and visible safety signage and labels should be placed near the screw vacuum pump and control panel to provide important safety information, warnings, and operating instructions. This includes labels for emergency stop buttons, voltage ratings, hazardous areas, and safety precautions. Safety signs should comply with relevant standards and regulations and be regularly inspected to ensure their visibility and legibility.

8. Operator Training and PPE:

Proper training should be provided to operators working with screw vacuum pumps to ensure they understand the safe operating procedures, potential hazards, and emergency protocols. Operators should also wear appropriate personal protective equipment (PPE) such as safety glasses, gloves, and hearing protection, as required by the specific operating conditions and industry regulations.

In summary, several safety features should be considered when operating screw vacuum pumps. These include overpressure protection, emergency stop buttons, motor and drive protections, vacuum level monitoring, cooling and ventilation systems, isolation and lockout/tagout procedures, safety signage, operator training, and the use of personal protective equipment. Implementing these safety features helps mitigate risks, protect personnel and equipment, and maintain a safe working environment during screw vacuum pump operation.

screw vane pump

What is a screw vacuum pump, and how does it operate?

A screw vacuum pump is a type of positive displacement vacuum pump that utilizes two or more intermeshing screws to create a vacuum by trapping and transporting gas or vapor from the inlet to the outlet of the pump. It operates based on the principle of volumetric compression.

The basic components of a screw vacuum pump include rotors (screws), a housing, and inlet and outlet ports. The rotors are typically helical in shape and have precise screw profiles. They are mounted on parallel shafts within the pump housing. As the rotors rotate, the intermeshing screws create sealed cavities or “pockets” between the rotor lobes and the housing.

The operation of a screw vacuum pump typically involves the following steps:

  1. Inlet Stage: At the beginning of the pump cycle, the rotors start rotating. As the cavity between the rotor lobes and the housing passes the inlet port, gas or vapor is drawn into the cavity. The volume of the cavity expands, creating a low-pressure zone at the inlet.
  2. Compression Stage: As the rotors continue to rotate, the cavity moves towards the outlet port, gradually reducing its volume. This reduction in volume compresses the gas or vapor trapped within the cavity, causing its pressure to increase.
  3. Outlet Stage: Finally, when the cavity reaches the outlet port, the compressed gas or vapor is discharged from the pump, and the cycle repeats.

It is important to note that screw vacuum pumps can operate with either dry or liquid seals. Dry screw vacuum pumps rely on tight clearances between the rotors and the housing to create an effective seal, while liquid-sealed screw vacuum pumps use a liquid sealant to prevent gas leakage and provide lubrication between the rotor surfaces.

Screw vacuum pumps offer several advantages in various applications:

  • High Efficiency: Screw vacuum pumps can achieve high volumetric efficiency due to their positive displacement design, enabling them to handle large volumes of gas or vapor efficiently.
  • Continuous Operation: These pumps are capable of continuous operation, making them suitable for demanding industrial processes requiring sustained vacuum levels.
  • Reliability: Screw vacuum pumps are known for their reliability and robust construction, making them suitable for harsh operating conditions.
  • Low Noise Levels: Compared to other types of vacuum pumps, screw vacuum pumps often produce lower noise levels during operation.
  • Wide Range of Applications: Screw vacuum pumps find applications in various industries, including chemical processing, pharmaceuticals, food and beverage, wastewater treatment, and more.

In summary, a screw vacuum pump is a positive displacement pump that utilizes intermeshing screws to create a vacuum by trapping and compressing gas or vapor. Its operation involves drawing gas into the cavity, compressing it, and then discharging it. Screw vacuum pumps offer high efficiency, reliability, and suitability for a wide range of applications, making them a popular choice in many industries.

China high quality China Factory Screw Vacuum Pump for Chemical   vacuum pump for ac	China high quality China Factory Screw Vacuum Pump for Chemical   vacuum pump for ac
editor by CX 2024-04-17

China Good quality Micro Vacuum and Air Diaphragm Pump (DC brushless motor) vacuum pump electric

Product Description

Micro Vacuum and Air Diaphragm Pump (DC brushless motor)

♦ 16000M2 modern factory with its own physical property rights, ESD anti-static control dust free workshop, 100+ sets of professional imported equipment
♦  4 major professional and precision laboratories that meet the CNAS national laboratory accreditation standards
♦  More than 50 patents in the micro water pump industry, strong research and development strength, and master advanced industry technology
♦  Complete certification, passed CE, ROHS, REACH, WRAS, Food Grade and other certification

Our Micro Diaphragm Pumps are available with a choice of 4 different drive motors.

A-  Premium duty brush DC motor
lifetime 3,000hours,longer endurance lifetime than other normal DC membrane pump

B-  Economical brush DC motor
lifetime:1,500hours 

C-  Coreless Brushless DC Motor  
A brushless electronically commutated dc motor (electronics integrated in motor), the motor runs vibration and spark free, almost silently, is very dynamic and extremely durable, ideal life-time 15000 hours

D-  Coreless Brushless DC motor with outer controller
With all advantages of coreless brushless DC motor, ideal life-time 15000 hours, and outer controller can realize more control functions of PWM or 0 -5V speed adjustment, brake, ~ instant starting work

H- Brushless DC Motor
Long lifetime 10000hour

Product Specification

Model TM30A-A TM30A-B TM30A-C TM30A-D
Motor type

A–high performance

Brush motor

B–Brush motor C–Brushless  motor D–Brushless motor
Pump Assembly Rated Life 3000hour 1000hour 15000hour 15000hour
Gas flow 6L/min 4.5L/min 4.5L/min 4L/min
Rated Voltage 12V 6/12/24v 6/12/24v 6/12/24v
No-load Current 0.24A 0.4/0.24/0.15A
Media    Most gas
Max Pressure  120kpa
Max Vacuum -70kpa
Ambient Temperature 41 to 158 F(5 to 70C)
Pump size 75.5*30.4*54.6mm 75*31.2*57.5mm 79*31.2*57.5mm 79*31.2*57.5mm
Weight 200g 150g 250g 250g
Inlet&Outlet OD 4.8mm/ID 2.6mm,hose suggestion:ID 4.0mm
Materials

pump head Nylon, 

membrane EPDM , valve EPDM 

pump head Nylon, 

membrane EPDM / PTFE, valve EPDM / FPM

pump head Nylon, 

membrane EPDM / PTFE, valve EPDM / FPM

pump head Nylon, 

membrane EPDM / PTFE, valve EPDM / FPM

Wetted material options

1.Optional membrane materials:
CHINAMFG for normal air 
PTFE for corrosive air,like acid, alkali air, CHINAMFG etc.

2.Optional valve materials:
CHINAMFG for normal air 
FPM for corrosive air, like acid, alkali, ozone,etc.
 

Get more Technical data, Please Send message

CHINAMFG Diaphragm series gas pumps are the perfect combination of form and function. The use of a special diaphragm allows the pump to transfer both air and liquid efficiently. The compact lightweight unit offers optimum sizing for analytical equipment.

 

 ADVANTAGES

♦  High pneumatic performance
♦  Compact size/high power density
♦  Uncontaminated flow – no contamination of the media due to oil-free operation
♦  Maintenance-free
♦  Long product life     
♦  Low sound level
♦  Low power consumption 
♦  Can operate in any orientation
♦  Suction                               

 

The versatility of CHINAMFG pumps allows a wide field of applications to be covered. Over many years our pumps have proved themselves in the following areas:
1.Industrial pressure and vacuum applications
2.Portable Analytical Instruments
3.Medical Equipment
4.Air Quality Sampling Monitors
5.Respiration Monitors

Performance Curve

More About Products

TOPS INDUSTRY AND TECHNOLOGY CO., LIMITED started in 2005, is the world’s leading supplier of micro 

pump solutions, and won the “National High-tech Enterprise”.  The company is mainly engaged in the research and development and manufacture of miniature brushless DC 

pumps and miniature diaphragm pumps. 80% of the products are exported to high-end markets in Europe and 

America, and are mainly used in water heaters, small household appliances, water heating  mattresses, medical  equipment, smart toilets, automobile circulation systems, etc. The company has always been known for its high  quality and high batch consistency, and has established solid and good cooperative relations with many world-renowned brands, such as: Tesla, Whirlpool, Flextronics, Kohler, GE, Roca, KTM, Geberit, etc.

Get more Technical data, Please Send message 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Pump Head Nylon, Membrane EPDM / PTFE, Valve EPDM
Power: Electric
Valve Body Type: Pump Head Nylon, Membrane EPDM / PTFE, Valve EPDM
Function: Electronic Type, Field Bus, Industrial Pressure and Vacuum Applications
Features: Oil-Free,Compact Size, Corrosionresistant, Mainten
More Features: High Efficiency, Can Be Mounted in Any Place
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used in the Automotive Industry?

Yes, vacuum pumps are widely used in the automotive industry for various applications. Here’s a detailed explanation:

The automotive industry relies on vacuum pumps for several critical functions and systems within vehicles. Vacuum pumps play a crucial role in enhancing performance, improving fuel efficiency, and enabling the operation of various automotive systems. Here are some key applications of vacuum pumps in the automotive industry:

1. Brake Systems: Vacuum pumps are commonly used in vacuum-assisted brake systems, also known as power brakes. These systems utilize vacuum pressure to amplify the force applied by the driver to the brake pedal, making braking more efficient and responsive. Vacuum pumps help generate the required vacuum for power brake assistance, ensuring reliable and consistent braking performance.

2. Emission Control Systems: Vacuum pumps are integral components of emission control systems in vehicles. They assist in operating components such as the Exhaust Gas Recirculation (EGR) valve and the Evaporative Emission Control (EVAP) system. Vacuum pumps help create the necessary vacuum conditions for proper functioning of these systems, reducing harmful emissions and improving overall environmental performance.

3. HVAC Systems: Heating, Ventilation, and Air Conditioning (HVAC) systems in vehicles often utilize vacuum pumps for various functions. Vacuum pumps help control the vacuum-operated actuators that regulate the direction, temperature, and airflow of the HVAC system. They ensure efficient operation and precise control of the vehicle’s interior climate control system.

4. Turbocharger and Supercharger Systems: In performance-oriented vehicles, turbocharger and supercharger systems are used to increase engine power and efficiency. Vacuum pumps play a role in these systems by providing vacuum pressure for actuating wastegates, blow-off valves, and other control mechanisms. These components help regulate the boost pressure and ensure optimal performance of the forced induction system.

5. Fuel Delivery Systems: Vacuum pumps are employed in certain types of fuel delivery systems, such as mechanical fuel pumps. These pumps utilize vacuum pressure to draw fuel from the fuel tank and deliver it to the engine. While mechanical fuel pumps are less commonly used in modern vehicles, vacuum pumps are still found in some specialized applications.

6. Engine Management Systems: Vacuum pumps are utilized in engine management systems for various functions. They assist in operating components such as vacuum-operated actuators, vacuum reservoirs, and vacuum sensors. These components play a role in engine performance, emissions control, and overall system functionality.

7. Fluid Control Systems: Vacuum pumps are used in fluid control systems within vehicles, such as power steering systems. Vacuum-assisted power steering systems utilize vacuum pressure to assist the driver in steering, reducing the effort required. Vacuum pumps provide the necessary vacuum for power steering assistance, enhancing maneuverability and driver comfort.

8. Diagnostic and Testing Equipment: Vacuum pumps are also utilized in automotive diagnostic and testing equipment. These pumps create vacuum conditions necessary for testing and diagnosing various vehicle systems, such as intake manifold leaks, brake system integrity, and vacuum-operated components.

It’s important to note that different types of vacuum pumps may be used depending on the specific automotive application. Common vacuum pump technologies in the automotive industry include diaphragm pumps, rotary vane pumps, and electric vacuum pumps.

In summary, vacuum pumps have numerous applications in the automotive industry, ranging from brake systems and emission control to HVAC systems and engine management. They contribute to improved safety, fuel efficiency, environmental performance, and overall vehicle functionality.

vacuum pump

Considerations for Selecting a Vacuum Pump for Cleanroom Applications

When it comes to selecting a vacuum pump for cleanroom applications, several considerations should be taken into account. Here’s a detailed explanation:

Cleanrooms are controlled environments used in industries such as semiconductor manufacturing, pharmaceuticals, biotechnology, and microelectronics. These environments require strict adherence to cleanliness and particle control standards to prevent contamination of sensitive processes or products. Selecting the right vacuum pump for cleanroom applications is crucial to maintain the required level of cleanliness and minimize the introduction of contaminants. Here are some key considerations:

1. Cleanliness: The cleanliness of the vacuum pump is of utmost importance in cleanroom applications. The pump should be designed and constructed to minimize the generation and release of particles, oil vapors, or other contaminants into the cleanroom environment. Oil-free or dry vacuum pumps are commonly preferred in cleanroom applications as they eliminate the risk of oil contamination. Additionally, pumps with smooth surfaces and minimal crevices are easier to clean and maintain, reducing the potential for particle buildup.

2. Outgassing: Outgassing refers to the release of gases or vapors from the surfaces of materials, including the vacuum pump itself. In cleanroom applications, it is crucial to select a vacuum pump with low outgassing characteristics to prevent the introduction of contaminants into the environment. Vacuum pumps specifically designed for cleanroom use often undergo special treatments or use materials with low outgassing properties to minimize this effect.

3. Particle Generation: Vacuum pumps can generate particles due to the friction and wear of moving parts, such as rotors or vanes. These particles can become a source of contamination in cleanrooms. When selecting a vacuum pump for cleanroom applications, it is essential to consider the pump’s particle generation level and choose pumps that have been designed and tested to minimize particle emissions. Pumps with features like self-lubricating materials or advanced sealing mechanisms can help reduce particle generation.

4. Filtration and Exhaust Systems: The filtration and exhaust systems associated with the vacuum pump are critical for maintaining cleanroom standards. The vacuum pump should be equipped with efficient filters that can capture and remove any particles or contaminants generated during operation. High-quality filters, such as HEPA (High-Efficiency Particulate Air) filters, can effectively trap even the smallest particles. The exhaust system should be properly designed to ensure that filtered air is released outside the cleanroom or passes through additional filtration before being reintroduced into the environment.

5. Noise and Vibrations: Noise and vibrations generated by vacuum pumps can have an impact on cleanroom operations. Excessive noise can affect the working environment and compromise communication, while vibrations can potentially disrupt sensitive processes or equipment. It is advisable to choose vacuum pumps specifically designed for quiet operation and that incorporate measures to minimize vibrations. Pumps with noise-dampening features and vibration isolation systems can help maintain a quiet and stable cleanroom environment.

6. Compliance with Standards: Cleanroom applications often have specific industry standards or regulations that must be followed. When selecting a vacuum pump, it is important to ensure that it complies with relevant cleanroom standards and requirements. Considerations may include ISO cleanliness standards, cleanroom classification levels, and industry-specific guidelines for particle count, outgassing levels, or allowable noise levels. Manufacturers that provide documentation and certifications related to cleanroom suitability can help demonstrate compliance.

7. Maintenance and Serviceability: Proper maintenance and regular servicing of vacuum pumps are essential for their reliable and efficient operation. When choosing a vacuum pump for cleanroom applications, consider factors such as ease of maintenance, availability of spare parts, and access to service and support from the manufacturer. Pumps with user-friendly maintenance features, clear service instructions, and a responsive customer support network can help minimize downtime and ensure continued cleanroom performance.

In summary, selecting a vacuum pump for cleanroom applications requires careful consideration of factors such as cleanliness, outgassing characteristics, particle generation, filtration and exhaust systems, noise and vibrations, compliance with standards, and maintenance requirements. By choosing vacuum pumps designed specifically for cleanroom use and considering these key factors, cleanroom operators can maintain the required level of cleanliness and minimize the risk of contamination in their critical processes and products.

vacuum pump

Can Vacuum Pumps Be Used in the Medical Field?

Yes, vacuum pumps have a wide range of applications in the medical field. Here’s a detailed explanation:

Vacuum pumps play a crucial role in various medical applications, providing suction or creating controlled vacuum environments. Here are some key areas where vacuum pumps are used in the medical field:

1. Negative Pressure Wound Therapy (NPWT):

Vacuum pumps are extensively utilized in negative pressure wound therapy, a technique used to promote wound healing. In NPWT, a vacuum pump creates a controlled low-pressure environment within a wound dressing, facilitating the removal of excess fluid, promoting blood flow, and accelerating the healing process.

2. Surgical Suction:

Vacuum pumps are an integral part of surgical suction systems. They provide the necessary suction force to remove fluids, gases, or debris from the surgical site during procedures. Surgical suction helps maintain a clear field of view for surgeons, enhances tissue visualization, and contributes to a sterile operating environment.

3. Anesthesia:

In anesthesia machines, vacuum pumps are used to create suction for various purposes:

– Airway Suction: Vacuum pumps assist in airway suctioning to clear secretions or obstructions from the patient’s airway during anesthesia or emergency situations.

– Evacuation of Gases: Vacuum pumps aid in removing exhaled gases from the patient’s breathing circuit, ensuring the delivery of fresh gas mixtures and maintaining appropriate anesthesia levels.

4. Laboratory Equipment:

Vacuum pumps are essential components in various medical laboratory equipment:

– Vacuum Ovens: Vacuum pumps are used in vacuum drying ovens, which are utilized for controlled drying or heat treatment of sensitive materials, samples, or laboratory glassware.

– Centrifugal Concentrators: Vacuum pumps are employed in centrifugal concentrators to facilitate the concentration or dehydration of biological samples, such as DNA, proteins, or viruses.

– Freeze Dryers: Vacuum pumps play a vital role in freeze-drying processes, where samples are frozen and then subjected to vacuum conditions to remove water via sublimation, preserving the sample’s structure and integrity.

5. Medical Suction Devices:

Vacuum pumps are utilized in standalone medical suction devices, commonly found in hospitals, clinics, and emergency settings. These devices create suction required for various medical procedures, including:

– Suctioning of Respiratory Secretions: Vacuum pumps assist in removing respiratory secretions or excess fluids from the airways of patients who have difficulty coughing or clearing their airways effectively.

– Thoracic Drainage: Vacuum pumps are used in chest drainage systems to evacuate air or fluid from the pleural cavity, helping in the treatment of conditions such as pneumothorax or pleural effusion.

– Obstetrics and Gynecology: Vacuum pumps are employed in devices used for vacuum-assisted deliveries, such as vacuum extractors, to aid in the safe delivery of babies during childbirth.

6. Blood Collection and Processing:

Vacuum pumps are utilized in blood collection systems and blood processing equipment:

– Blood Collection Tubes: Vacuum pumps are responsible for creating the vacuum inside blood collection tubes, facilitating the collection of blood samples for diagnostic testing.

– Blood Separation and Centrifugation: In blood processing equipment, vacuum pumps assist in the separation of blood components, such as red blood cells, plasma, and platelets, for various medical procedures and treatments.

7. Medical Imaging:

Vacuum pumps are used in certain medical imaging techniques:

– Electron Microscopy: Electron microscopes, including scanning electron microscopes and transmission electron microscopes, require a vacuum environment for high-resolution imaging. Vacuum pumps are employed to maintain the necessary vacuum conditions within the microscope chambers.

These are just a few examples of the wide-ranging applications of vacuum pumps in the medical field. Their ability to create suction and controlled vacuum environments makes them indispensable in medical procedures, wound healing, laboratory processes, anesthesia, and various other medical applications.

China Good quality Micro Vacuum and Air Diaphragm Pump (DC brushless motor)   vacuum pump electricChina Good quality Micro Vacuum and Air Diaphragm Pump (DC brushless motor)   vacuum pump electric
editor by CX 2024-04-16

China Good quality 5PA 4kw 181m3/H No Leakage Variable Pitch Petrochemical Dry Screw Vacuum Pump supplier

Product Description

 

Working principle

The vacuum in dry screw pumps is created through 2 parallel-arranged screw rotors that rotate in opposite directions. These rotors trap the gas coming in through the inlet and deliver it to the gas discharge or pressure side. As the gas is getting compressed, there is no contact between the rotors. This does away with any need for the compression chamber to have any operating fluids or lubrication.
 The lubricant used to lubricate the gears and shaft seal is sealed in the gearbox by the shaft seal. The pump can be cooled either directly by circulating cooling water or by a cooling unit with fan and radiator.
The dry screw vacuum pump adopts a special rotor pitch design, compared with the ordinary rotor pitch design, reduce the energy consumption by about 30%, the temperature rise of the exhaust end is reduced by about 100 ºC, the reliability and stability of the operation of the product is greatly improved, can be suitable for any working conditions of vacuum.
The dry screw pumps can be widely used in solvent recovery, vacuum drying, concentration, crystallization, distillation and other processes in the chemical and pharmaceutical industries, vacuum extrusion and molding in the plastic and rubber industries, vacuum degassing in the metallurgical industry; vacuum degassing and drying in the solar energy, microelectronics, lithium battery and other industries.

Pump body and end caps:  high-strength cast iron.
Pump body and end caps:  high strength cast iron.
Screw rotor:                        ductile cast iron.
Anti-corrosion coating:        corrosion-resistant Hastelloy.
Synchronous gears:            alloy steel.
Radial lip seal:                     imported PTFE mixture or
                                            high-temperature resistant fluorine rubber;
Seal bushings:                    stainless steel surface covered with ceramic.

Flow chart

 

Main features

1. The screw rotor is designed with variable pitch structure, the ultimate vacuum can reach below 1Pa, which can meet all kinds of vacuum processing from atmosphere to high vacuum.
2. Oil free – Adapt to various special working conditions for reliable use.
3. It can operate reliably in the pressure range from atmosphere to several Pa.
4. No friction between moving parts, simple structure, lower operation and maintenance cost.
5. Nitrogen seal and composite seal design is optional, which has the benefit of good reliability, low cost of use, simple maintenance.
6. The rotor is dynamically balanced at high speed and the motor is connected by flange, with high concentricity, low vibration and low noise.
7. Hastelloy anti-corrosion coating is optional for rotor surface, condensable material is not easy to condense in the pump cavity, better corrosion resistance.
8. Compared with oil seal pump, liquid ring pump, there is no waste gas, no waste liquid, no waste oil emission, energy saving and environmental friendly.
It can be used alone or with Roots vacuum pump, air-cooled Roots vacuum pump, molecular vacuum pump, etc. to obtain an oil-free high vacuum system.

The benefit of dry screw vacuum pump compared to liquid ring vacuum pump:

    -Shorten the process cycle and improve production efficiency
    -Reduce water consumption
    -Save energy
    -Improve product quality
    -Can recover solvent by reducing the drying time of products
    -Reduce the cost of wastewater and waste gas treatment

A CASE in a pharmaceutical factory
Process introduction:The penicillin sodium salt solution is fed into the crystallization tank through vacuum. By steam heating, agitator stirring, and adding butanol, the water and butanol in the penicillin solution are pumped into the condenser and condensed into the liquid collecting tank, which can be reused.

Process requirements:
1. The volume of crystallization tank is 7.5m3, and about 4.5m3 penicillin solution is added in the process.
2. Before entering the crystallization tank, the water content of penicillin solution is about 20%, and after crystallization, the water content is required to be about 1%.
3. Vacuum feeding for 2h, then adding butanol for 30min, and then starting to crystallize. The process requires low temperature and fast speed, and the lower the temperature, the better the quality of penicillin. The shorter the reaction time, the better.
4. Vacuum degree requirements: the vacuum degree shall be kept above -0.097MPa. High vacuum degree can reduce the reaction temperature and shorten the reaction time.

The previous vacuum system was 2BE1252+air ejector, which is now transformed into a dry screw vacuum pump. The comparison table of test data is as follows:

vacuum system 2BE1252+ejector DVP 1600 screw pump
Feeding time (h) 2 1.5
Liquid temperature at the beginning of crystallization (ºC) 31.5 16.6
Crystallization time (h) 6 4.5
Time from crystallization to liquid coming out (min) 30 15
Crystal quality average good
Power consumption (KW) 45 37
Water consumption (m3) 26.4 0.72

Economic benefit analysis:

  Cost saving(USD) Remark
Water consumption and treatment 130 Water cost: $0.65/m3, water treatment: 30/m3
Power 15 $0.15/Kwh
Labor, production efficiency 43 Reduced from 6 hour to 4.5 hour
Sum up 188  

Please contact us for a detailed report of economic benefit analysis for your applications! 

 

Configuration
Standard configuration:
Machine base, pump head, coupling, motor, driving screen, air inlet connector, check valve, vacuum gauge, manual filling valve exhaust port muffler.
Optional accessories:
Inlet filter, inlet condenser, solvent flushing device, nitrogen purging device, nitrogen sealing device, exhaust port condenser, solenoid filling valve, cooling water flow switch, temperature sensor, pressure transmitter.

Applications

Leak Detection    Metallurgy  Industrial furnace  Lithium Battery
Chemical, pharmaceutical  Wind tunnel test  Power Industry Vacuum coating
Microelectronics industry Drying Process  Packaging and Printing Solar Energy
Exhaust gas recovery       

Product Parameters

Technical data of Variable pitch Dry screw vacuum pump

                Spec.
Model
Nominal pumping speed(50Hz) Ultimate pressure Nominal motor rating (50Hz)   Nominal motor speed  (50Hz)  Noise level   Lp Maximum
cooling water required
Suction Connection size Discharge Connection size Weight (Without Motor)
 m³/h Pa kw rpm dB(A) L/min mm mm Kg
DVP-180 181 2 4 2900 82 8 50 40 280
DVP-360 354 2 7.5 2900 83 10 50 40 400
DVP-540 535 2 11 2900 83 10 50 40 500
DVP-650 645 1 15 2900 84 20 65 50 600
DVP-800 780 1 22 2900 86 30 100 80 800
DVP-1600 1450 1 37 2900 86 40 125 100 1200

Technical data of Constant pitch Dry screw vacuum pump

                Spec.
Model
Nominal pumping speed(50Hz) Ultimate pressure Nominal motor rating (50Hz)   Nominal motor speed  (50Hz)  Noise level   Lp Maximum
cooling water required
Suction Connection size Discharge Connection size Weight (Without Motor)
 m³/h Pa kw rpm dB(A) L/min mm mm Kg
DSP-140 143 5 4 2900 82 10 50 40 240
DSP-280 278 5 7.5 2900 83 20 50 40 350
DSP-540 521 5 15 2900 83 30 65 50 550
DSP-650 617 5 18.5 2900 84 45 65 50 630
DSP-720 763 5 22 2900 85 55 80 80 780
DSP-1000 912 5 30 2900 86 70 100 80 880

Note: The cooling water volume of the dry screw vacuum pump provided in the table is the amount under 20ºC room temperature water. When the dry screw vacuum pump uses cooling device, the cooling water will be increased, the difference of inlet and outlet water temperature is generally controlled below 7ºC is appropriate.

 

Dimension

 

 

FAQ

Q: What information should I offer for an inquiry?
A: You can inquire based on the model directly, but it is always recommended that you contact us so that we can help you to check if the pump is the most appropriate for your application.

Q: Can you make a customized vacuum pump?
A: Yes, we can do some special designs to meet customer applications. Such as customized sealing systems, speical surface treatment can be applied for roots vacuum pump and screw vacuum pump. Please contact us if you have special requirements. 

Q: I have problems with our vacuum pumps or vacuum systems, can you offer some help?
A: We have application and design engineers with more than 30 years of experience in vacuum applications in different industries and help a lot of customers resolve their problems, such as leakage issues, energy-saving solutions, more environment-friendly vacuum systems, etc. Please contact us and we’ll be very happy if we can offer any help to your vacuum system.

Q: Can you design and make customized vacuum systems?
A: Yes, we are good for this.

Q: What is your MOQ?
A: 1 piece or 1 set.

Q: How about your delivery time?
A: 5-10 working days for the standard vacuum pump if the quantity is below 20 pieces, 20-30 working days for the conventional vacuum system with less than 5 sets. For more quantity or special requirements, please contact us to check the lead time.

Q: What are your payment terms?
A: By T/T, 50% advance payment/deposit and 50% paid before shipment.

Q: How about the warranty?
A: We offer 1-year warranty (except for the wearing parts).

Q: How about the service?
A: We offer remote video technical support. We can send the service engineer to the site for some special requirements.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Video Instruction
Warranty: 1 Year
Nominal Pumping Speed(50Hz): 181 M3/H
Ultimate Pressure: 5 PA
Nominal Motor Rating(50Hz): 4 Kw
Nominal Motor Speed(50Hz): 2900 Rpm

screw vane pump

Are there energy-efficient options for screw vacuum pumps?

Yes, there are energy-efficient options available for screw vacuum pumps. Here’s a detailed explanation of energy-efficient features and technologies that can be found in screw vacuum pumps:

1. Variable Frequency Drives (VFD):

Screw vacuum pumps equipped with Variable Frequency Drives (VFD) offer energy efficiency by allowing precise control of the pump’s rotational speed. VFDs adjust the motor speed according to the required vacuum level, resulting in reduced energy consumption compared to fixed-speed pumps. By matching the pump’s speed to the process demands, VFDs help optimize energy usage and minimize unnecessary energy losses.

2. High-Efficiency Motors:

Energy-efficient screw vacuum pumps often incorporate high-efficiency motors. These motors are designed to minimize energy losses and improve overall efficiency. High-efficiency motors typically comply with international efficiency standards, such as the International Electrotechnical Commission (IEC) standards or the National Electrical Manufacturers Association (NEMA) standards, and are classified with high efficiency ratings, such as IE3 or NEMA Premium.

3. Advanced Control Systems:

Modern screw vacuum pumps may feature advanced control systems that optimize energy consumption. These systems utilize intelligent algorithms to monitor and adjust the pump’s operation based on real-time process conditions. By continuously assessing the demand for vacuum and adapting the pump’s performance accordingly, advanced control systems help reduce energy waste and improve overall energy efficiency.

4. Energy Recovery Systems:

Some screw vacuum pumps are equipped with energy recovery systems that capture and utilize energy that would otherwise be wasted. These systems can include heat exchangers or energy regeneration units that repurpose excess heat from the pump’s operation. By utilizing this recovered energy for other processes, such as preheating or heating applications, energy recovery systems contribute to increased overall system efficiency.

5. Optimized Pump Design:

Manufacturers continuously work on optimizing the design of screw vacuum pumps to improve energy efficiency. This can involve reducing internal friction, optimizing rotor profiles, and minimizing leakage paths. These design enhancements aim to maximize the pump’s performance while minimizing energy losses, resulting in improved overall energy efficiency.

6. Energy Monitoring and Analysis:

Energy-efficient screw vacuum pumps often come with built-in energy monitoring and analysis features. These systems allow operators to monitor the energy consumption of the pump in real-time and analyze energy usage patterns. By identifying energy-intensive periods or inefficiencies, operators can make informed decisions to optimize the pump’s operation and further improve energy efficiency.

7. Energy Efficiency Certifications:

Energy-efficient screw vacuum pumps may carry energy efficiency certifications or labels, such as the ENERGY STAR® certification or the European Union’s Energy Efficiency Directive compliance. These certifications provide reassurance that the pump has undergone testing and meets specific energy efficiency criteria, providing confidence in its energy-saving capabilities.

In summary, energy-efficient options for screw vacuum pumps exist and incorporate features such as Variable Frequency Drives (VFD), high-efficiency motors, advanced control systems, energy recovery systems, optimized pump design, energy monitoring and analysis capabilities, and energy efficiency certifications. By utilizing these energy-efficient options, industries can reduce energy consumption, lower operating costs, and minimize their environmental impact.

screw vane pump

What safety features should be considered when operating screw vacuum pumps?

When operating screw vacuum pumps, it is important to consider several safety features to ensure the protection of personnel, equipment, and the surrounding environment. Here’s a detailed explanation of the safety features that should be considered:

1. Overpressure Protection:

Screw vacuum pumps should be equipped with overpressure protection mechanisms to prevent the system from exceeding safe pressure limits. This can include pressure relief valves or rupture discs that automatically release excess pressure to avoid equipment damage or catastrophic failures. It is essential to set the pressure relief devices at appropriate levels and regularly inspect and maintain them to ensure their proper functioning.

2. Emergency Stop Button:

An emergency stop button should be easily accessible near the screw vacuum pump or within the control panel. This allows operators to quickly shut down the pump in case of emergencies, such as equipment malfunction, safety hazards, or personnel injury. The emergency stop button should be clearly labeled, well-maintained, and tested regularly to ensure its effectiveness.

3. Motor and Drive Protections:

The motor and drive system of the screw vacuum pump should be equipped with safety features to prevent overheating, overloading, and electrical faults. This can include thermal overload protection, motor temperature sensors, current monitoring devices, and short-circuit protection mechanisms. These safety features help safeguard the integrity of the motor and drive system, reducing the risk of fire, electrical hazards, and equipment damage.

4. Vacuum Level Monitoring:

Monitoring the vacuum level is crucial for safe operation. Screw vacuum pumps should be equipped with vacuum gauges or sensors to provide real-time information on the vacuum level. This allows operators to ensure that the system is operating within the desired range and helps detect any abnormal conditions or leaks. Alarms or visual indicators can also be implemented to alert operators when the vacuum level deviates from the set parameters.

5. Cooling and Ventilation:

Screw vacuum pumps generate heat during operation, and adequate cooling and ventilation systems should be in place to prevent overheating. This can include fans, heat exchangers, or cooling fins to dissipate heat effectively. Proper ventilation should be ensured to prevent the accumulation of flammable or hazardous gases. It is important to regularly inspect the cooling and ventilation systems and clean or replace components as needed to maintain optimal performance and safety.

6. Isolation and Lockout/Tagout:

Isolation valves should be installed in the suction and discharge lines of screw vacuum pumps to allow for safe maintenance, repair, or shutdown procedures. Lockout/Tagout (LOTO) procedures should be followed when performing maintenance or service activities. This involves locking and tagging the energy sources, such as electrical power or compressed air, to prevent accidental startup or release of stored energy. Adequate training and awareness of LOTO procedures are essential for personnel safety.

7. Safety Signage and Labels:

Clear and visible safety signage and labels should be placed near the screw vacuum pump and control panel to provide important safety information, warnings, and operating instructions. This includes labels for emergency stop buttons, voltage ratings, hazardous areas, and safety precautions. Safety signs should comply with relevant standards and regulations and be regularly inspected to ensure their visibility and legibility.

8. Operator Training and PPE:

Proper training should be provided to operators working with screw vacuum pumps to ensure they understand the safe operating procedures, potential hazards, and emergency protocols. Operators should also wear appropriate personal protective equipment (PPE) such as safety glasses, gloves, and hearing protection, as required by the specific operating conditions and industry regulations.

In summary, several safety features should be considered when operating screw vacuum pumps. These include overpressure protection, emergency stop buttons, motor and drive protections, vacuum level monitoring, cooling and ventilation systems, isolation and lockout/tagout procedures, safety signage, operator training, and the use of personal protective equipment. Implementing these safety features helps mitigate risks, protect personnel and equipment, and maintain a safe working environment during screw vacuum pump operation.

screw vane pump

What are the typical applications of screw vacuum pumps in various industries?

Screw vacuum pumps find a wide range of applications across various industries due to their efficiency, reliability, and versatility. Here are some typical applications of screw vacuum pumps in different industries:

Chemical Processing:

  • Vacuum distillation and drying processes
  • Vacuum filtration and solvent recovery
  • Crystallization and evaporation systems
  • Chemical reactors and vacuum drying ovens

Pharmaceuticals:

  • Vacuum drying and freeze-drying of pharmaceutical products
  • Deaeration and degassing processes
  • Vacuum packaging and sealing
  • Purification and distillation of pharmaceutical compounds

Food and Beverage:

  • Deaeration and removal of dissolved gases in food and beverage products
  • Evaporation and concentration processes
  • Freeze drying and vacuum packaging
  • Vacuum cooling and drying of food products

Power Generation:

  • Steam condenser and turbine exhaust applications
  • Deaeration and vacuum systems in power plants
  • Vacuum distillation in the production of power plant chemicals
  • Transformer drying and impregnation

Electronics Manufacturing:

  • Vacuum drying and degassing of electronic components
  • Vacuum soldering and brazing processes
  • Thin film deposition and vacuum coating
  • Printed circuit board manufacturing

Wastewater Treatment:

  • Vacuum filtration and sludge dewatering
  • Vacuum degassing and deaeration of wastewater
  • Evaporation and concentration of wastewater streams

Environmental Applications:

  • Landfill gas recovery and treatment
  • Vacuum drying and deodorization in waste management
  • Vacuum systems for air pollution control

Other Industries:

  • Oil and gas industry for vapor recovery and gas processing
  • Automotive industry for vacuum metallurgy and component manufacturing
  • Textile industry for vacuum drying and deaeration of fabrics
  • Research and development laboratories for various scientific applications

These are just a few examples of the many applications of screw vacuum pumps in various industries. The versatility and reliability of screw vacuum pumps make them suitable for a wide range of vacuum-related processes, enabling enhanced productivity, improved product quality, and cost savings in diverse industrial settings.

China Good quality 5PA 4kw 181m3/H No Leakage Variable Pitch Petrochemical Dry Screw Vacuum Pump   supplier China Good quality 5PA 4kw 181m3/H No Leakage Variable Pitch Petrochemical Dry Screw Vacuum Pump   supplier
editor by CX 2024-04-16

China manufacturer China CHINAMFG Brand High Quality Electric Motor Liquid Water Ring Vacuum Pump with CE Certificate for Municipal Desilting vacuum pump diy

Product Description

Brief introduction:

2BEC series water ring vacuum pump CHINAMFG single function, distribution plate and impeller adopt optimal design, with friction-free surface, no lubricating oil, compact structure, reliable operation, easy to use and maintain, wide selection range, simple structure and easy maintenance.It is mainly used for pumping gas without particles. The working medium is clean water at room temperature. Acid, alkali and other media can also be used as working liquid for special requirements.

Parameters:

Gas range:  4.8—-450m3/min

Limit vacuum degree: 33hpa—-160hpa

Efficiency:  40—-65%

Features:

1.Single stage, single function, optimized design of distribution plate and impeller, high efficiency, simple structure and easy maintenance.

2.The flexible valve plate automatically adjusts the exhaust Angle, so that the pump can operate efficiently under different suction conditions.

3.The impeller end face adopts grading design, which reduces the sensitivity of the pump to dust and water scale formation in the medium.

4. Packing gland is divided into half structure, more convenient to replace packing.

5. Small size pump, with packing and mechanical seal 2 types of shaft seal.

6. Rotor with impeller diameter greater than 200mm, shaft sealing position is equipped with shaft sleeve to protect shaft wear.

7. Improved bearing structure, large axial and radial bearing capacity, accurate positioning, to ensure reliable operation of the pump.

8. Equipped with heat exchanger to realize working liquid circulation, reduce water consumption, no need to set additional booster.

9. When installed with cavitation prevention device, the cavitation resistance of pump running under higher vacuum can be improved effectively.

10. Adopt specially designed steam separator to separate, effectively reduce resistance and reduce noise.

11.The smooth surface of the flow component can effectively reduce the precipitation and reduce the scaling process.

12. Wide suction range, with a stage injector, suction pressure can be lower than 33hpa.

Structure:
 

1. The only rotating part of 2BEA/2BEC —- impeller makes the working fluid form hydraulic pressure in the oval pump body by rotating.At this time, the working fluid plays 3 roles of sealing medium, compression medium and cooling medium at the same time, without wear and lubrication.

2. In the exhaust stage, the liquid ring gradually approaches the hub, and the pumping medium is discharged from the exhaust port along the axial direction.

3. Continuous injection of supplementary liquid to compensate for the liquid taken away by the exhaust gas.

4. In the suction stage, the liquid ring is gradually away from the hub, and the pumping medium is sucked axially from the suction port.

5. Because the impeller is eccentric with respect to the rotating liquid ring, the liquid reciprocates in the space between the blades, —— just like the movement of the piston in the cylinder, —— produces axial suction and compression on the pumping medium.

It operates at 2 vacuum levels

When fitted with an intermediate separator, the left and right parts of the 2BEC pump body can operate at different vacuum levels.As long as the suction pressure difference between the 2 parts (A to B) is less than 80 kPa, A 2BEC can be used as 2 independent vacuum pumps.This feature further enhances the operational flexibility of 2BEC.This flexible solution minimizes energy consumption and footprint in applications that require both vacuum levels.Because the 2BEC was designed with the possibility of long term operation under large differential pressures in mind, its reliability under these operating conditions is not diminished at all.

Configuration:

Application:

Water ring vacuum pumps are widely used in:
Vacuum filtration, vacuum distillation, extrusion molding, impregnation, liquid degassing, compressed air regeneration, food processing, steam recovery, water pump diversion, condenser water tank replenishment, drying, wood drying, pharmaceutical vacuum, laboratory vacuum, solvent recovery, extraction, tHangZhou, cHangZhou, etc.
Performance:

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Materials: CS, Ci, SS304, SS316, SS316L, CD4MCU, Titanium
Manufacturer Level: Top Level
Shaft Sealing: Mechanical Seal and Packing
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

vacuum pump

Can Vacuum Pumps Be Used for Vacuum Furnaces?

Yes, vacuum pumps can be used for vacuum furnaces. Here’s a detailed explanation:

Vacuum furnaces are specialized heating systems used in various industries for heat treatment processes that require controlled environments with low or no atmospheric pressure. Vacuum pumps play a crucial role in creating and maintaining the vacuum conditions necessary for the operation of vacuum furnaces.

Here are some key points regarding the use of vacuum pumps in vacuum furnaces:

1. Vacuum Creation: Vacuum pumps are used to evacuate the furnace chamber, creating a low-pressure or near-vacuum environment. This is essential for the heat treatment processes carried out in the furnace, as it helps eliminate oxygen and other reactive gases, preventing oxidation or unwanted chemical reactions with the heated materials.

2. Pressure Control: Vacuum pumps provide the means to control and maintain the desired pressure levels within the furnace chamber during the heat treatment process. Precise pressure control is necessary to achieve the desired metallurgical and material property changes during processes such as annealing, brazing, sintering, and hardening.

3. Contamination Prevention: By removing gases and impurities from the furnace chamber, vacuum pumps help prevent contamination of the heated materials. This is particularly important in applications where cleanliness and purity of the processed materials are critical, such as in the aerospace, automotive, and medical industries.

4. Rapid Cooling: Some vacuum furnace systems incorporate rapid cooling capabilities, known as quenching. Vacuum pumps assist in facilitating the rapid cooling process by removing the heat generated during quenching, ensuring efficient cooling and minimizing distortion or other unwanted effects on the treated materials.

5. Process Flexibility: Vacuum pumps provide flexibility in the type of heat treatment processes that can be performed in vacuum furnaces. Different heat treatment techniques, such as vacuum annealing, vacuum brazing, or vacuum carburizing, require specific pressure levels and atmospheric conditions that can be achieved and maintained with the use of vacuum pumps.

6. Vacuum Pump Types: Different types of vacuum pumps can be used in vacuum furnaces, depending on the specific requirements of the heat treatment process. Commonly used vacuum pump technologies include oil-sealed rotary vane pumps, dry screw pumps, diffusion pumps, and cryogenic pumps. The choice of vacuum pump depends on factors such as required vacuum level, pumping speed, reliability, and compatibility with the process gases.

7. Maintenance and Monitoring: Proper maintenance and monitoring of vacuum pumps are essential to ensure their optimal performance and reliability. Regular inspections, lubrication, and replacement of consumables (such as oil or filters) are necessary to maintain the efficiency and longevity of the vacuum pump system.

8. Safety Considerations: Operating vacuum furnaces with vacuum pumps requires adherence to safety protocols. This includes proper handling of potentially hazardous gases or chemicals used in the heat treatment processes, as well as following safety guidelines for operating and maintaining the vacuum pump system.

Overall, vacuum pumps are integral components of vacuum furnaces, enabling the creation and maintenance of the required vacuum conditions for precise and controlled heat treatment processes. They contribute to the quality, consistency, and efficiency of the heat treatment operations performed in vacuum furnaces across a wide range of industries.

vacuum pump

What Is the Difference Between Dry and Wet Vacuum Pumps?

Dry and wet vacuum pumps are two distinct types of pumps that differ in their operating principles and applications. Here’s a detailed explanation of the differences between them:

Dry Vacuum Pumps:

Dry vacuum pumps operate without the use of any lubricating fluid or sealing water in the pumping chamber. They rely on non-contact mechanisms to create a vacuum. Some common types of dry vacuum pumps include:

1. Rotary Vane Pumps: Rotary vane pumps consist of a rotor with vanes that slide in and out of slots in the rotor. The rotation of the rotor creates chambers that expand and contract, allowing the gas to be pumped. The vanes and the housing are designed to create a seal, preventing gas from flowing back into the pump. Rotary vane pumps are commonly used in laboratories, medical applications, and industrial processes where a medium vacuum level is required.

2. Dry Screw Pumps: Dry screw pumps use two or more intermeshing screws to compress and transport gas. As the screws rotate, the gas is trapped between the threads and transported from the suction side to the discharge side. Dry screw pumps are known for their high pumping speeds, low noise levels, and ability to handle various gases. They are used in applications such as semiconductor manufacturing, chemical processing, and vacuum distillation.

3. Claw Pumps: Claw pumps use two rotors with claw-shaped lobes that rotate in opposite directions. The rotation creates a series of expanding and contracting chambers, enabling gas capture and pumping. Claw pumps are known for their oil-free operation, high pumping speeds, and suitability for handling dry and clean gases. They are commonly used in applications such as automotive manufacturing, food packaging, and environmental technology.

Wet Vacuum Pumps:

Wet vacuum pumps, also known as liquid ring pumps, operate by using a liquid, typically water, to create a seal and generate a vacuum. The liquid ring serves as both the sealing medium and the working fluid. Wet vacuum pumps are commonly used in applications where a higher level of vacuum is required or when handling corrosive gases. Some key features of wet vacuum pumps include:

1. Liquid Ring Pumps: Liquid ring pumps feature an impeller with blades that rotate eccentrically within a cylindrical casing. As the impeller rotates, the liquid forms a ring against the casing due to centrifugal force. The liquid ring creates a seal, and as the impeller spins, the volume of the gas chamber decreases, leading to the compression and discharge of gas. Liquid ring pumps are known for their ability to handle wet and corrosive gases, making them suitable for applications such as chemical processing, oil refining, and wastewater treatment.

2. Water Jet Pumps: Water jet pumps utilize a jet of high-velocity water to create a vacuum. The water jet entrains gases, and the mixture is then separated in a venturi section, where the water is recirculated, and the gases are discharged. Water jet pumps are commonly used in laboratories and applications where a moderate vacuum level is required.

The main differences between dry and wet vacuum pumps can be summarized as follows:

1. Operating Principle: Dry vacuum pumps operate without the need for any sealing fluid, while wet vacuum pumps utilize a liquid ring or water as a sealing and working medium.

2. Lubrication: Dry vacuum pumps do not require lubrication since there is no contact between moving parts, whereas wet vacuum pumps require the presence of a liquid for sealing and lubrication.

3. Applications: Dry vacuum pumps are suitable for applications where a medium vacuum level is required, and oil-free operation is desired. They are commonly used in laboratories, medical settings, and various industrial processes. Wet vacuum pumps, on the other hand, are used when a higher vacuum level is needed or when handling corrosive gases. They find applications in chemical processing, oil refining, and wastewater treatment, among others.

It’s important to note that the selection of a vacuum pump depends on specific requirements such as desired vacuum level, gas compatibility, operating conditions, and the nature of the application.

In summary, the primary distinction between dry and wet vacuum pumps lies in their operating principles, lubrication requirements, and applications. Dry vacuum pumps operate without any lubricating fluid, while wet vacuum pumps rely on a liquid ring or water for sealing and lubrication. The choice between dry and wet vacuum pumps depends on the specific needs of the application and the desired vacuum level.

vacuum pump

Can Vacuum Pumps Be Used in Food Processing?

Yes, vacuum pumps are widely used in food processing for various applications. Here’s a detailed explanation:

Vacuum pumps play a crucial role in the food processing industry by enabling the creation and maintenance of vacuum or low-pressure environments. They offer several benefits in terms of food preservation, packaging, and processing. Here are some common applications of vacuum pumps in food processing:

1. Vacuum Packaging: Vacuum pumps are extensively used in vacuum packaging processes. Vacuum packaging involves removing air from the packaging container to create a vacuum-sealed environment. This process helps extend the shelf life of food products by inhibiting the growth of spoilage-causing microorganisms and reducing oxidation. Vacuum pumps are used to evacuate the air from the packaging, ensuring a tight seal and maintaining the quality and freshness of the food.

2. Freeze Drying: Vacuum pumps are essential in freeze drying or lyophilization processes used in food processing. Freeze drying involves removing moisture from food products while they are frozen, preserving their texture, flavor, and nutritional content. Vacuum pumps create a low-pressure environment that allows frozen water to directly sublimate from solid to vapor, resulting in the removal of moisture from the food without causing damage or loss of quality.

3. Vacuum Cooling: Vacuum pumps are utilized in vacuum cooling processes for rapid and efficient cooling of food products. Vacuum cooling involves placing the food in a vacuum chamber and reducing the pressure. This lowers the boiling point of water, facilitating the rapid evaporation of moisture and heat from the food, thereby cooling it quickly. Vacuum cooling helps maintain the freshness, texture, and quality of delicate food items such as fruits, vegetables, and bakery products.

4. Vacuum Concentration: Vacuum pumps are employed in vacuum concentration processes in the food industry. Vacuum concentration involves removing excess moisture from liquid food products to increase their solids content. By creating a vacuum, the boiling point of the liquid is reduced, allowing for gentle evaporation of water while preserving the desired flavors, nutrients, and viscosity of the product. Vacuum concentration is commonly used in the production of juices, sauces, and concentrates.

5. Vacuum Mixing and Deaeration: Vacuum pumps are used in mixing and deaeration processes in food processing. In the production of certain food products such as chocolates, confectioneries, and sauces, vacuum mixing is employed to remove air bubbles, achieve homogeneity, and improve product texture. Vacuum pumps aid in the removal of entrapped air and gases, resulting in smooth and uniform food products.

6. Vacuum Filtration: Vacuum pumps are utilized in food processing for vacuum filtration applications. Vacuum filtration involves separating solids from liquids or gases using a filter medium. Vacuum pumps create suction that draws the liquid or gas through the filter, leaving behind the solid particles. Vacuum filtration is commonly used in processes such as clarifying liquids, removing impurities, and separating solids from liquids in the production of beverages, oils, and dairy products.

7. Marinating and Brining: Vacuum pumps are employed in marinating and brining processes in the food industry. By applying a vacuum to the marinating or brining container, the pressure is reduced, allowing the marinade or brine to penetrate the food more efficiently. Vacuum marinating and brining help enhance flavor absorption, reduce marinating time, and improve the overall taste and texture of the food.

8. Controlled Atmosphere Packaging: Vacuum pumps are used in controlled atmosphere packaging (CAP) systems in the food industry. CAP involves modifying the gas composition within food packaging to extend the shelf life and maintain the quality of perishable products. Vacuum pumps aid in the removal of oxygen or other unwanted gases from the package, allowing the introduction of a desired gas mixture that preserves the food’s freshness and inhibits microbial growth.

These are just a few examples of how vacuum pumps are used in food processing. The ability to create and control vacuum or low-pressure environments is a valuable asset in preserving food quality, enhancing shelf life, and facilitating various processing techniques in the food industry.

China manufacturer China CHINAMFG Brand High Quality Electric Motor Liquid Water Ring Vacuum Pump with CE Certificate for Municipal Desilting   vacuum pump diyChina manufacturer China CHINAMFG Brand High Quality Electric Motor Liquid Water Ring Vacuum Pump with CE Certificate for Municipal Desilting   vacuum pump diy
editor by CX 2024-04-15

China OEM Permanent Magnet Frequency Converter Screw Vacuum Pump with Smart Control System with Good quality

Product Description

Internal Structure


Technical Specifications

Component Details

High-efficiency Permanent Magnet Motor
Insulation grade F, protective grade IP55, soft start operation, stable flow rate. The constant torque range and weak magnetic range are wider, The efficiency of the permanent magnet motor is higher by 20-30% than that of the regular motor.

Integrated Frequency Converter
Adopt the top frequency system in China, with a wide range of speed regulation, and high precision. Quality stability, to ensure that the pressure transmitter signal is transmitted.

Smart Touch Controller
Superior built-in intelligence requires minimal manual operation. A high-precision color electronic screen, clear graphics display, and indication of maintenance information, fault alarms, and safety shutdown alarms.

Special Type Intake Valve
Automatic control of the opening, to ensure the engine fuel injection and lubricating oil circulation.
Ultra-low oil circuit loss, overall efficiency improvement.
Normally open solenoid valve control, emergency stop automatically closed, prevent oil injection.

Cooling System
Large heat exchange area design effectively prevents high-temperature machines and reduces oil emulsification and coking caused by high-temperature.

Excellent Air Filter
An air filter with excellent air purification capability ensures a clean air system and three-stage filtration to maximize air purification and meet standard emissions. It can remove a lot of steam and a small amount of dust gas occasions, the ultimate vacuum is up to 1 Pa.

Reliable Oil and Air Separator
Vertical tangential cyclone separation structure, complete separation of oil and air, easy replacement of cartridge, and reduced maintenance cost.

High-Quality Soundproof Cotton
Compact noise reduction housing, achieving no vibration amplitude during operation, cooperates with high-quality soundproof cotton to further improve noise reduction levels.

Iron Oil Pipe & Air Pipe System
Iron is resistant to high temperature, low temperature, and high pressure, suitable for bad working conditions, completely leak-free, and maintenance-free.

Sanzhi Screw Vacuum Pump VS Water Ring Pump

Features of Vacuum Pump

Multiple filtration
Three-stage filtration minimizes air impurities.

Energy saving
Saves 50-60% of electricity compared to traditional vacuum pumps.

Constant pressure
Constant speed pumping, solving the problem of unstable vacuum pumping.

Higher vacuum degree
The vacuum degree of the vacuum pump on the market is -0.07Mpa, our vacuum degree is -0.098Mpa.

Easy use
Simple structure, easy to install, operate, and maintain.

Packaging&Shipping

Our Advantages
 

1. Price advantage

Direct to provide customers with ex-factory prices, so that customers are more competitive.

2. Direct deal
All products are supplied directly from the factory and we will offer more cost-effective products.

3. OEM & ODM services
The strong production and management capacity of the factory can provide OEM/ODM service for you.

4. Customised service
We accept non-standard orders, export orders, voltage/power/pressure, etc, which can be customized. If you have demands, please contact us.

5. Accept small order
You can place a small trial order first to test the quality of our products.

6. Fast delivery
High-quality products with timely delivery.

7. Complete authorisation
For distributors, we can provide the full authorization certificate to allow you to sell our SANZHI brand products.

ABOUT US
Sanzhi (ZheJiang ) Compressor Co., Ltd is a specialist in the production of screw air compressors and screw vacuum pumps. The extensive product range includes normal pressure/low-pressure screw air compressors, permanent magnet frequency conversion screw air compressors, two-stage compression screw air compressors, screw air compressors for laser cutting, single-tank mobile screw air compressors, double-tank mobile screw air compressor, electric mobile screw air compressor, diesel mobile screw air compressor, screw vacuum pump, etc.

Our factory is located in HangZhou City, ZheJiang Province, China. We can pick you up from HangZhou International Airport to our factory, 30 kilometers in about 1 hour. Welcome to our company!

Application industry
The items are widely used in wood processing, ceramic processing, printing processing, plastic processing, food packaging, semiconductor materials, pharmaceutical industry, PET blowing industry, petrochemical industry, rubber industry, iron and steel industry, mining industry, spraying industry, tobacco industry, foam factories, brick factories, electronic factories, marine exploration, hydroelectric power stations, ships, military industries and so on.

Successful cases

FAQ
Q1. Are you a trading company or manufacturer?
A: We are a professional manufacturer of screw vacuum pumps, with more than 10 years of experience.

Q2. How do you control quality?
A: 1. The raw materials are strictly inspected.
  2. Installation procedures are strictly controlled.
  3. Each machine must pass at least 5 hours of continuous testing before leaving the factory.

Q3. What information must I provide to get a suitable machine?
1. How much air delivery capacity (Unit: CFM or m³/Min)
2. How much working pressure (Unit: PSI, Bar or Mpa)
3. What is the voltage and frequency of my country of residence (V/Hz)
4. Whether I need other accessories such as an air tank, filters, and/or air dryers.
Tell us the answer, we will offer a scheme for you!

Q4. What is the general unit conversion?
1Bar = 0.1Mpa = 14.5PSI
1m³/min = 35.32cfm
1KW = 1.34HP

Q5. What is the available voltage vacuum pump?
A: Sanzhi available voltage include 380v/50hz/3p, 400v/50hz/3p, 415v/50hz/3p, 220v/60hz/3p, 440v/60hz/3p, and can be customized according to your requirements.

Q6. How long is the delivery time?
A: For standard voltage,15 working days after the confirmed order. Non-standard, please contact our sales.

Q7. What’s the payment term?
A: TT with 30% deposit, rest balance B/L copy will be ok. USD and RMB can be accepted.

Q8. How about your warranty?
A: One year for the whole machine and 2 years for screw vacuum pump, except for consumable spare parts.

Q9. What about the maintenance?
A: First maintenance needs to be done after 500 hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.

Q10. Can machines be run in high-temperature environment?
A: Yes, machines would run in high-temperature environment countries. Working temperature from -20° to 45°(-4ºF-113ºF).

Q11. Do you offer OEM service?
A: Yes, with a professional design team, both OEM & ODM orders are highly welcome.

Q12. How long could your vacuum pump be used?
A: Generally, more than 10 years.

Q13. Will you provide some spare parts for the machines?
A: Yes, of course.

Q14. How about your after-sales service?
A: Provide customers with installation and commissioning online instructions, and arrange our engineers to help you with training and installation.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technology Support
Warranty: 1 Year, 2 Year
Oil or Not: Oil
Structure: Screw Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Samples:
US$ 12000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Vacuum Pump

Types of vacuum pumps

A vacuum pump is a device that pulls gas molecules out of a sealed volume and maintains a partial vacuum. Its job is to create a relative vacuum within its capabilities. Several types of vacuum pumps are available, including scroll and rotary piston models. Each has its own characteristics and uses. To learn more, read this article.

Screw Pump

Screw vacuum pumps use a mechanical screw to move an air or gas chamber to the axial housing wall. The movement of the chamber reduces the volume of gas, which is pre-compressed before being expelled through the pressure connection. These pumps can be single-pitch models or variable-pitch models. Variable pitch models feature variable pitch rotors that help distribute heat loads evenly across the rotor. Some models also include a thermostatic control valve that shuts off the pump if the water temperature gets too high. Screw vacuum pumps are available in single-ended or double-ended designs. Single-ended and double-ended screw pumps provide up to 3.7 x 10-4 Torr and an ultimate vacuum of 900 m3/h (560 cfm), which is sufficient for many industrial processes. Progressive cavity pumps are particularly suitable for vapor compression applications. These pumps also have an internal rotor to minimize layer formation. Combined with air cooling, they are suitable for use in hazardous environments. In addition, the screw rotor design prevents the build-up of substances in the pump cavity that could react with high temperatures. These pumps are also easily removable for quick cleaning. Screw vacuum pumps are also designed for low cost and minimal maintenance. Agknx screw vacuum pumps are designed in Germany and are very reliable and economical. Pump performance depends on cooling system and temperature. The temperature of the water used should be kept within a certain range, otherwise the pump may overheat and fail. Screw vacuum pumps are often used in scientific experiments. They are standard main pumps in large storage rings, gravitational wave detectors, and space simulation chambers. One of the largest ultra-high vacuum chambers in the world is made of screw vacuum pumps. An example is the KATRIN experiment. There are two types of screw vacuum pumps: oil-sealed and dry. Oil-sealed screw pumps use oil as a sealant and coolant. They are suitable for demanding vacuum applications such as woodworking and plastics processing. Dry screw pumps have an air-cooled chamber, and they can achieve higher vacuum levels than oil-sealed pumps.

Rotary Piston Vacuum Pumps

Rotary Piston Vacuum Pumps provide the rugged performance essential for applications requiring vacuum. They can deliver flow rates up to 1280 acfm and reach deep vacuum levels up to 0.0004 Torr. They are available in single-stage and two-stage models. The report also provides detailed information about the key players, their financial status, and business overview. A rotary piston vacuum pump is a versatile and affordable vacuum device. They are available in single-stage and two-stage configurations with higher capacity and higher vacuum. They can be easily maintained by an in-house maintenance team or by a local third-party service shop. Pump manufacturers can also provide services. Rotary piston vacuum pumps are available in single-stage and compound designs. They are ideal for a variety of applications. Their high-performance design enables them to operate at any pressure up to atmospheric pressure. They also have no metal-to-metal contact, which makes them ideal for dirty applications. Whether you need a pump that can operate at high or low pressure, a rotary piston vacuum pump is an excellent choice. When purchasing a rotary piston vacuum pump, it is important to choose a manufacturer with a reputation for providing high-quality service and repairs. In addition to the high quality of the pump, you also need to ensure its availability. You should also consider the cost and quality of the part. A good vacuum pump company should also provide technical support, service support and accessories. Oil-free pumps are a popular choice for laboratories, clean rooms and confined rooms. Their high-quality parts are made from lightweight, corrosion-resistant and specially formulated polymers. Oil-free pumps can handle high levels of air moisture and are excellent at removing contaminants. However, they are not suitable for applications containing organic vapors or acids. Atlas Copco’s GLS rotary piston pumps are a popular choice for industrial vacuum applications. Its space-saving design makes it an ideal solution for harsh environments. It is also very reliable and has low lifecycle costs. It has an automatic lubrication system and water mizer to minimize water consumption.
Vacuum Pump

Scroll Vacuum Pumps

<br Scroll Vacuum Pumps can be used to pump air, gases, and other fluids. They are suitable for creating a vacuum in transfer chambers, mass spectrometers, and load lock chambers. They are also ideal for helium leak detectors and other analytical equipment. Scroll vacuum pumps are available in a variety of models, including the diaphragm, turbine, and oil-dry scroll models. They are used in a variety of industries, including the semiconductor, biotechnology, and pharmaceutical industries. Flexible and durable oil-free scroll vacuum pumps are an excellent choice for light industrial, general laboratory, and research applications. They also offer several advantages over other vacuum pumps, including low operating costs and environmental sustainability. Scroll vacuum pumps do not require oil, which is a big advantage in terms of cost. Scroll vacuum pumps are also quieter. Scroll vacuum pumps are designed for low, medium, and high vacuum systems. They create a high vacuum and cannot tolerate particles. Although they are relatively small, they are ideal for vacuum laboratory applications and are also suitable for dry vacuum pumping. They can be combined with chemically resistant PTFE components, making them more suitable for chemical applications. Scroll vacuum pumps feature a unique design that makes them very versatile and efficient. The pump has two helical structures, one is fixed and the other is rotating, which can effectively pump gas and liquid. When the rotor begins to move, the gas is compressed slightly and then flows through the system to the exhaust port. Scroll vacuum pumps are efficient, oil-free and compact. Known for their high tolerance to the atmosphere, they feature sensorless INFORM(r) control to minimize noise and vibration. These vacuum pumps are ideal for low to medium flow applications including analytical equipment, freeze dryers, vacuum coaters and mass spectrometers. The most important advantage of a scroll vacuum pump is its reliability. They can be used for three years or more without problems and are easy to maintain. With proper maintenance, they can reduce repair costs.
Vacuum Pump

Diaphragm vacuum pumps

Diaphragm vacuum pumps are used in a variety of industrial processes. These pumps use an elastic diaphragm fixed around the outer diameter. They are efficient and can handle most types of liquids. They are commonly used for dewatering, filling and water removal. These pumps are easy to maintain. Diaphragm vacuum pumps are available in a variety of sizes and power outputs. Oil-free diaphragm vacuum pumps do not require oil, lubrication and cooling. These pumps are compatible with many types of laboratory equipment. Diaphragm vacuum pumps are equipped with dual voltage motors and DC drives for greater flexibility and durability. Diaphragm vacuum pumps can achieve higher vacuum levels than rotary vane pumps. They are more efficient than diaphragm pumps. They do not require oil and require less maintenance than their rotary vane counterparts. However, the diaphragms of these pumps may need to be replaced every few years. Diaphragm vacuum pumps are the most popular type of vacuum pump and can be used for a variety of applications. They can be used for everyday work and can be large enough to be used in a vacuum oven or rotary evaporator. Diaphragm vacuum pumps use pulsed motion to move air. They eliminate the need for oil and are highly chemical and steam resistant. They can handle a wide variety of samples, including high viscosity liquids. Diaphragm vacuum pumps are generally smaller than other types of vacuum pumps. Scroll pumps are made of metal and are generally recommended for solvent and water samples. They are not recommended for high acid samples. However, they are suitable for freeze drying. They can also be used for concentration applications. In this way, they have greater displacement capacity and can reach higher ultimate vacuum levels.

China OEM Permanent Magnet Frequency Converter Screw Vacuum Pump with Smart Control System   with Good quality China OEM Permanent Magnet Frequency Converter Screw Vacuum Pump with Smart Control System   with Good quality
editor by CX 2024-04-15

China high quality 2be1 Same to CHINAMFG Liquid Ring Vacuum Pump with Ce SGS a/c vacuum pump

Product Description

2BE Liquid Ring Vacuum Pump

Product Name 2BE ring vacuum pump for pulp making liquid
Material SS304, SS316L, SS321, etc
Standard ISO,CE
Flow rate Up to 9450 m3/h
Voltage 220V/380V/415V/460V or as customer required
Warranty 12 months
Applilcation Paper-making, chemical, petrochemical, light industry,pharmacy, instruments, metallurgy, construction, electronic appliance, coal-cleaning, mineral concentration, fertilizer etc.

2BE Liquid Ring Pump Introduction
2BE series pump adopt the single-stage and single-function structure with the advantage of simple structure, convenient maintenance,reliable running,high efficiency and energy saving and they can be suitable for the bad working conditiond such as large water discharge and load impact fluctuation etc.

They are usually used to suction the gas without CHINAMFG particle, undissolved and noncorrosive gas in order to form vacuum and pressure in the closed container.

By changing the structure material, they can aslo be used to suction corrosive gas or use corrosive liquid as operating liquid.

Advantage
1.The whole body are painted by baking paint.

2.The pump are manufactured under German DIN standard.

3.Liquid-level indicator equipped for star-up observation.

4.Impeller welded by nodular iron or steel, which ensure high stability and promises long-lifetime even in harsh condition.

5.Coupling(direct drive type) with highly intensified elastic material(made of polyurethane) which ensures pump stability and long lifetime.

6.High quality mechanical seal(optional) with no air leakage, specially suitable for toxic gas suction.

If you have any others pump type require, please free contact us

FAQ

Q:Can you supply pump qualified with ANSI and ASME standard?
A:Yes, our pump compliant with ISO / ASME/ANSI standard.

Q:How to customize pumps and mechanical seals ?
A:Customers could send us application data, we will select suitable pump and seal types, or client could send us drawings, We are well in OEM and ODM.

Q:How can I pay for my items? What is the payment you can provide?
A:Usually by T/T, 30% down payment once PI confirmed, the balance will be paid after inspection and before shipment. TT or L/C at sight

Q:How long is warranty?
A:1 year for main construction warranty.

Q:How long is production lead time?
A:Normally 15 working days. If client need urgently, we have a huge spare parts stock, we could finish assembly and testing in 7 days.

Q:What is the shipping terms you can provide?
A:Depnends on customer’s requirements, we can provide different transportantin terms, such as EXW, FOB, CIF.

Q:Who is in charge of after-sales?
A:SUNPACE has professional after sales service team, we will follow up the client’s comments and suggest them good solutions. Solve client’s problems and keeping the clients profit.

Q:Who is in charge of maintenance?
A:Local agent. If pump running has any problem on site, our local agent will arrival the plant within 24 hours
 

Send message  Get product Offer & Brochure!!!
 ↓↓↓

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 12 Months
Structure: Single-Stage Pump
Vacuum Degree: High Vacuum
Flow Rate Max: 9450 M3/H
Application: Vacuum Pumps for Chemical Applications
Power: Electric
Samples:
US$ 2000/Set
1 Set(Min.Order)

|

Customization:
Available

|

vacuum pump

What Are the Advantages of Using Oil-Sealed Vacuum Pumps?

Oil-sealed vacuum pumps offer several advantages in various applications. Here’s a detailed explanation:

1. High Vacuum Performance: Oil-sealed vacuum pumps are known for their ability to achieve high levels of vacuum. They can create and maintain deep vacuum levels, making them suitable for applications that require a low-pressure environment. The use of oil as a sealing and lubricating medium helps in achieving efficient vacuum performance.

2. Wide Operating Range: Oil-sealed vacuum pumps have a wide operating range, allowing them to handle a broad spectrum of vacuum levels. They can operate effectively in both low-pressure and high-vacuum conditions, making them versatile for different applications across various industries.

3. Efficient and Reliable Operation: These pumps are known for their reliability and consistent performance. The oil-sealed design provides effective sealing, preventing air leakage and maintaining a stable vacuum level. They are designed to operate continuously for extended periods without significant performance degradation, making them suitable for continuous industrial processes.

4. Contamination Handling: Oil-sealed vacuum pumps are effective in handling certain types of contaminants that may be present in the process gases or air being evacuated. The oil acts as a barrier, trapping and absorbing certain particulates, moisture, and chemical vapors, preventing them from reaching the pump mechanism. This helps protect the pump internals from potential damage and contributes to the longevity of the pump.

5. Thermal Stability: The presence of oil in these pumps helps in dissipating heat generated during operation, contributing to their thermal stability. The oil absorbs and carries away heat, preventing excessive temperature rise within the pump. This thermal stability allows for consistent performance even during prolonged operation and helps protect the pump from overheating.

6. Noise Reduction: Oil-sealed vacuum pumps generally operate at lower noise levels compared to other types of vacuum pumps. The oil acts as a noise-damping medium, reducing the noise generated by the moving parts and the interaction of gases within the pump. This makes them suitable for applications where noise reduction is desired, such as laboratory environments or noise-sensitive industrial settings.

7. Versatility: Oil-sealed vacuum pumps are versatile and can handle a wide range of gases and vapors. They can effectively handle both condensable and non-condensable gases, making them suitable for diverse applications in industries such as chemical processing, pharmaceuticals, food processing, and research laboratories.

8. Cost-Effective: Oil-sealed vacuum pumps are often considered cost-effective options for many applications. They generally have a lower initial cost compared to some other types of high-vacuum pumps. Additionally, the maintenance and operating costs are relatively lower, making them an economical choice for industries that require reliable vacuum performance.

9. Simplicity and Ease of Maintenance: Oil-sealed vacuum pumps are relatively simple in design and easy to maintain. Routine maintenance typically involves monitoring oil levels, changing the oil periodically, and inspecting and replacing worn-out parts as necessary. The simplicity of maintenance procedures contributes to the overall cost-effectiveness and ease of operation.

10. Compatibility with Other Equipment: Oil-sealed vacuum pumps are compatible with various process equipment and systems. They can be easily integrated into existing setups or used in conjunction with other vacuum-related equipment, such as vacuum chambers, distillation systems, or industrial process equipment.

These advantages make oil-sealed vacuum pumps a popular choice in many industries where reliable, high-performance vacuum systems are required. However, it’s important to consider specific application requirements and consult with experts to determine the most suitable type of vacuum pump for a particular use case.

vacuum pump

Can Vacuum Pumps Be Used for Soil and Groundwater Remediation?

Vacuum pumps are indeed widely used for soil and groundwater remediation. Here’s a detailed explanation:

Soil and groundwater remediation refers to the process of removing contaminants from the soil and groundwater to restore environmental quality and protect human health. Vacuum pumps play a crucial role in various remediation techniques by facilitating the extraction and treatment of contaminated media. Some of the common applications of vacuum pumps in soil and groundwater remediation include:

1. Soil Vapor Extraction (SVE): Soil vapor extraction is a widely used remediation technique for volatile contaminants present in the subsurface. It involves the extraction of vapors from the soil by applying a vacuum to the subsurface through wells or trenches. Vacuum pumps create a pressure gradient that induces the movement of vapors towards the extraction points. The extracted vapors are then treated to remove or destroy the contaminants. Vacuum pumps play a vital role in SVE by maintaining the necessary negative pressure to enhance the volatilization and extraction of contaminants from the soil.

2. Dual-Phase Extraction (DPE): Dual-phase extraction is a remediation method used for the simultaneous extraction of both liquids (such as groundwater) and vapors (such as volatile organic compounds) from the subsurface. Vacuum pumps are utilized to create a vacuum in extraction wells or points, drawing out both the liquid and vapor phases. The extracted groundwater and vapors are then separated and treated accordingly. Vacuum pumps are essential in DPE systems for efficient and controlled extraction of both liquid and vapor-phase contaminants.

3. Groundwater Pumping and Treatment: Vacuum pumps are also employed in groundwater remediation through the process of pumping and treatment. They are used to extract contaminated groundwater from wells or recovery trenches. By creating a vacuum or negative pressure, vacuum pumps facilitate the flow of groundwater towards the extraction points. The extracted groundwater is then treated to remove or neutralize the contaminants before being discharged or re-injected into the ground. Vacuum pumps play a critical role in maintaining the required flow rates and hydraulic gradients for effective groundwater extraction and treatment.

4. Air Sparging: Air sparging is a remediation technique used to treat groundwater and soil contaminated with volatile organic compounds (VOCs). It involves the injection of air or oxygen into the subsurface to enhance the volatilization of contaminants. Vacuum pumps are utilized in air sparging systems to create a vacuum or negative pressure zone in wells or points surrounding the contaminated area. This induces the movement of air and oxygen through the soil, facilitating the release and volatilization of VOCs. Vacuum pumps are essential in air sparging by maintaining the necessary negative pressure gradient for effective contaminant removal.

5. Vacuum-Enhanced Recovery: Vacuum-enhanced recovery, also known as vacuum-enhanced extraction, is a remediation technique used to recover non-aqueous phase liquids (NAPLs) or dense non-aqueous phase liquids (DNAPLs) from the subsurface. Vacuum pumps are employed to create a vacuum or negative pressure gradient in recovery wells or trenches. This encourages the movement and extraction of NAPLs or DNAPLs towards the recovery points. Vacuum pumps facilitate the efficient recovery of these dense contaminants, which may not be easily recoverable using traditional pumping methods.

It’s important to note that different types of vacuum pumps, such as rotary vane pumps, liquid ring pumps, or air-cooled pumps, may be used in soil and groundwater remediation depending on the specific requirements of the remediation technique and the nature of the contaminants.

In summary, vacuum pumps play a vital role in various soil and groundwater remediation techniques, including soil vapor extraction, dual-phase extraction, groundwater pumping and treatment, air sparging, and vacuum-enhanced recovery. By creating and maintaining the necessary pressure differentials, vacuum pumps enable the efficient extraction, treatment, and removal of contaminants, contributing to the restoration of soil and groundwater quality.

vacuum pump

Can Vacuum Pumps Be Used in Laboratories?

Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here’s a detailed explanation:

Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:

1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.

2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.

3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.

4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.

5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.

6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).

7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.

Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.

China high quality 2be1 Same to CHINAMFG Liquid Ring Vacuum Pump with Ce SGS   a/c vacuum pump		China high quality 2be1 Same to CHINAMFG Liquid Ring Vacuum Pump with Ce SGS   a/c vacuum pump
editor by CX 2024-04-11

China OEM Vacuum Water Circulation Vacuum Pump Compressor Liquid with Good quality

Product Description

 

Product Description

A typical rotary vacuum pump is comprised of a housing, a rotor and a series of radially moving vanes, which come in dry-running or lubricated versions (the latter are the most commonly used in the majority of industrial applications). The rotor is generally the only continuously moving vane vacuum pump part. There’s also a working chamber inside the housing, which is divided into 2 separate compartments by the rotor and vanes. Many vane vacuum pumps also include an inlet valve as a safety feature.

Rotary vane vacuum pumps are available in single-stage and two-stage versions. The stages refer to the number of times that compression actually occurs. Two-stage pumps are also able to attain a lower pressure than single-stage pumps, due to the fact that gas is only admitted during the high pressure stage.

Rotary vane vacuum pumps are ideally suited for a wide range of low and medium vacuum applications such as general and chemical laboratory, analytics, CZPT drying, process engineering and more. A rotary vane pump works via positive displacement, which is when volumes of air or gas are confined within a closed space and are compressed when the space is mechanically reduced.

Product Parameters

Product Model 50/60Hz RH063
Pumping Speed 50Hz 63m³/H
60Hz 76m³/H
Ultimate Pressure mbar 0.1
Inlet Diameter   G1 1/4”
Voltage 50Hz 220-240/345-415V
60Hz 220-275/380-480V
Motor Power kW 2.2
Current (A) 50Hz 8.5/4.9
60Hz 9.2/5.3
Rotate Speed r/min 1440/1720
Noise Level dB 63
Oil Volume L 2.0
Net Weight kg 55

Our Advantages

 

1.The whole body are painted by baking paint.

2.The pump are manufactured under high quality standard.

vacuum pump and compressor are high-efficiency and energy-saving products developed by our factory on the basis of years of scientific research achievements and production experience, combined with advanced technology of imported products. It is usually used to pump gases that do not contain CZPT particles, are insoluble in water, and are not corrosive to create vacuum and pressure in closed containers. By changing the structural material, it can also be used to pump corrosive gas or use corrosive liquid as working fluid. Widely used in paper making, chemical, petrochemical, light industry, pharmaceutical, food, metallurgy, building materials, stone tools, coal washing, mineral processing, fertilizer and other industries.
 

Company Profile

 

Packaging & Shipping

 

Certifications

 

FAQ

Q: Can you design and make customized vacuum systems?
A: Yes, we are good for this.

Q: What is your MOQ?
A: 1 piece or 1 set.

Q: How about your delivery time?
A: 5-10 working days for the standard vacuum pump if the quantity is below 20 pieces, 20-30 working days for the conventional vacuum system with less than 5 sets. For more quantity or special requirements, please contact us to check the lead time.

Q: What are your payment terms?
A: By T/T, 50% advance payment/deposit and 50% paid before shipment.

Q: How about the warranty?
A: We offer 1-year warranty (except for the wearing parts).

Q: How about the service?
A: We offer remote video technical support. We can send the service engineer to the site for some special requirements.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: After-Sale Service Is Available
Oil or Not: Oil
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: Vacuum
Working Conditions: Dry
Customization:
Available

|

Vacuum Pump

Disadvantages of using a vacuum pump

A vacuum pump is a device that pulls gas molecules out of a volume and leaves a partial vacuum. Its main function is to create a relative vacuum within a given volume. There are several types of vacuum pumps. Some of them are better suited for specific purposes than others. However, there are some disadvantages to using a vacuum pump.

Application of vacuum pump

Vacuum pumps are invaluable tools in many industrial and scientific processes. They are often used to move gas and other harmful substances and to clear clogged drains. They are also used to support mechanical equipment. For example, they can be mounted on the engine of a motor vehicle or the power hydraulic component of an aircraft. No matter how they are used, they should fit the application.
The principle of a vacuum pump is to draw gas from a sealed chamber to create a partial vacuum. Over the years, vacuum pump technology has evolved from its original beginnings to its current form. Today, there are many types of vacuum pumps, including rotary vane pumps, momentum transfer pumps, and regeneration pumps.
The semiconductor industry is a major user of vacuum pumps. Among other applications, these pumps are commonly used for mounting circuit boards, securing components, blowing and jetting, and pumping. The use of renewable resources has paved the way for widespread semiconductor production, where vacuum pumps are crucial. This manufacturing shift is expected to boost vacuum pump sales across Europe.
Vacuum Pump
The most common types of vacuum pumps are positive displacement and rotary vane pumps. Positive displacement pumps are most effective for rough vacuum applications and are usually paired with momentum transfer pumps. These pumps are used in pharmaceutical, food and medical processes. They are also used in diesel engines, hydraulic brakes and sewage systems.
Positive displacement pumps are used to create low vacuum conditions and create a partial vacuum. These pumps create lower air pressure by enlarging the chamber and allowing gas to flow into the chamber. The air in the cavity is then vented to the atmosphere. Alternatively, momentum transfer pumps, also known as molecular pumps, use high-speed rotating blades to create dense fluids.
Vacuum Pump

Their drawbacks

Vacuum pumps are useful in industrial applications. However, they are not perfect and have some drawbacks. One of them is that their output is limited by the vacuum hose. Vacuum hoses are the bottleneck for vacuum pump performance and evacuation rates. The hose must be kept free of water and organic matter to ensure the highest possible vacuum.
Dry vacuum pumps do not have these problems. They may be more cost-effective but will increase maintenance costs. Water consumption is another disadvantage. When pond water is used, the pump puts additional pressure on the treatment facility. Additionally, contaminants from the gas can become trapped in the water, shortening the life of the pump.
Another disadvantage of vacuum pumps is their limited operating time at low vacuum. Therefore, they are only suitable for extremely high vacuum levels. Diaphragm pumps are another option for industrial applications. They have a sealed fluid chamber that allows a moderate vacuum. They also feature short strokes and a low compression ratio, making them quieter than their reciprocating counterparts.
Vacuum pumps are used in many industrial and scientific processes. They can be used to transport hazardous materials or clear clogged drains. They are also used in rear doors and dump tanks. Certain types of vacuum pumps can cause fluid blockages, which can be harmful. The vacuum pump should also be well suited to the fluid in it to avoid contamination.
Another disadvantage is the lack of proper vacuum system testing equipment. Mechanics often underestimate the importance of a properly functioning vacuum system. Most stores lack the equipment needed for proper troubleshooting. Typically, mechanics rely on the cockpit vacuum gauge to determine if the pump is working properly.
Some vacuum pumps are capable of providing constant vacuum. These pumps are also capable of eliminating odors and spills. However, these advantages are outweighed by some disadvantages of vacuum pumps.

China OEM Vacuum Water Circulation Vacuum Pump Compressor Liquid   with Good quality China OEM Vacuum Water Circulation Vacuum Pump Compressor Liquid   with Good quality
editor by CX 2024-04-10