Tag Archives: water vacuum pump

China Custom Roots Water Ring Vacuum Unit Dry Screw Vacuum Pump Corrosion-Resistant Stainless Steel High Vacuum vacuum pump electric

Product Description

 

Product Description

JZJ2b series Roots water ring vacuum unit is an air extraction unit composed of ZJ and zjp roots vacuum pumps as injection and extraction pumps and 2BV and 2be water ring vacuum pumps as front stage pumps according to a certain pumping speed ratio. It can not only be used to extract general gases, but also gases containing water and a small amount of dust. Compared with the general mechanical vacuum pump, it is not afraid of oil pollution, water vapor and dust; Compared with the general water ring vacuum pump, it has advantages of the high limit vacuum and high pumping speed under high vacuum conditions. It is widely used in chemical, pharmaceutical, petroleum, electric power, food, light industry and other industries. It is used to pump places containing a large amount of water vapor, condensable gas and a small amount of CHINAMFG particles.

Our Advantages

JZJ2B series Roots water ring vacuum pump unit adopts 2BV and 2be water ring vacuum pumps with high efficiency and energy saving as the front stage pump and roots vacuum pump as the main pumping pump. Therefore, jzj2b series Roots water ring vacuum pump unit has the advantages of high efficiency, compact structure and high vacuum degree.

The working fluid of the front stage pump of jzj2b series Roots water ring vacuum pump unit mostly uses water, and can also use organic solvents (methanol, ethanol, xylene, acetone and other organic solvents) or other liquids. The front stage pump is used as a closed circulation system, which greatly reduces the pollution to the environment and greatly improves the recovery of organic solvents. The limit vacuum degree is determined by the saturated vapor pressure of the working fluid.

Product Parameters

Unit Type Pump model Pumping speed  (L/S) Maximum suction pressure (Pa) pressure limit Total Power (kW)
Main Pump prepump water ring oil pump unit
JZJ2B30-2 ZJ30 2BV2061 30 8000     2.25
JZJ2B30-1 ZJ30 2BV5110 30 12000     4.75
JZJ2B70-2 ZJ70 2BV5110 70 6000     5.1
JZJ2B70-1 ZJ70 2BV5111 70 12000     6.6
JZJ2B150-2A ZJP150 2BV5111 150 6000     7.7
JZJ2B150-2B ZJP150 2BV5121 150 8000     9.7
JZJ2B150-1 ZJP150 2BV5131 150 10000     13.2
JZJ2B300-2A ZJP300 2BV5131 300 4000     15
JZJ2B300-2B ZJP300 2BV5161 300 5000 267 80 19
JZJ2B300-1 ZJP300 2BE1 202 300 10000     26
JZJ2B600-2A ZJP600 2BE1 202 600 4000     27.5
JZJ2B600-2B ZJP600 2BE1 203 600 5000     42.5
JZJ2B600-1 ZJP600 2BE1 252 600 12000     50.5
JZJ2B1200-2A ZJP1200 2BE1 252 1200 2500     56
JZJ2B1200-2B ZJP1200 2BE1 253 1200 4000     86
JZJ2B1200-1 ZJP1200 2BE1 303 1200 8000     121
JZJ2B2500-2 ZJP2500 2BE1 303 2500 3000     132
JZJ2B70-2.1 ZJ70 ZJ30/2BV5110 70 6000     5.85
JZJ2B150-2.1 ZJP150 ZJ70/2BV5111 150 6000 25 0.8 8.8
JZJ2B 150-4.1 ZJP150 ZJ30/2BV5110 150 3000     6.95

 

Unit Type pump model pumping speed (L/S) maximum suction pressure (Pa) pressure limit total power (kW)
main pump prepump water ring unit oil pump unit
JZJ2B300-2.1 ZJP300 ZJP150/2BV5131 300 5000     17.2
JZJ2B300-2.2 ZJP300 ZJP150/2BV5121 300 4000     13.7
JZJ2B300-4.1 ZJP300 ZJ70/2BV5111 300 2000     10.6
JZJ2B600-4.1 ZJP600 ZJP150/2BV5131 600 1500     18.7
JZJ2B600-2.2 ZJP600 ZJP300/2BV5161 600 2000 25 0.8 24.5
JZJ2B1200-4.2 ZJP1200 ZJP300/2BV5161 1200 1000 30
JZJ2B1200-4.1 ZJP1200 ZJP1200/2BE1 202 1200 1200     37
JZJ2B 1200-2.2 ZJP1200 ZJP600/2BE1 203 1200 2500     53.5
JZJ2B1200-2.1 ZJP1200 ZJP600/2BE1 252 1200 3000     61.5
JZJ2B2500-4.1 ZJP2500 ZJP600/2BE1 252 2500 1000     72.5
JZJ2B70-2.1.1 ZJ70 ZJ30/ZJ30/2BV5110 70 6000     6.6
JZJ2B150-2.2.1 ZJP150 ZJ70/ZJ30/2BV5110 150 3000     8.05
JZJ2B300-2.2.1 ZJP300 ZJ150/ZJ70/2BV5111 300 3000     12.8
JZJ2B300-4.2.1 ZJP300 ZJ70/ZJ30/2BV5110 300 1200 0.5 0.05 9.85
JZJ2B600-2.2.1 ZJP600 ZJP300/ZJP150/2BV5131 600 2500 22.7
JZJ2B600-4.2.1 ZJP600 ZJP150/ZJ70/2BV5111 600 1200     14.3
JZJ2B1200-4.2.1 ZJP1200 ZJP300/ZJP150/2BV5131 1200 1000     28.2
JZJ2B2500-4.2.1 ZJ2500 ZJP600/ZJP300/2BE1 202 2500 1000     53.5

Detailed Photos

Vacuum pump is used in the field of chemical plantVacuum pumps are used in oiling machines

General Manager Speech

Deeply cultivate the vacuum technology, and research,develop and manufacture the vacuum equipment to provide the best solution in the vacuum field and make the vacuum application easier.

Company Profile

ZheJiang Kaien Vacuum Technology Co., Ltd. is a high-tech enterprise integrating R & D, production and operation of vacuum equipment. The company has strong technical force, excellent equipment and considerate after-sales service. The product manufacturing process is managed in strict accordance with IS09001 quality system. It mainly produces and sells screw vacuum pump, roots pump, claw vacuum pump, runoff vacuum pump, scroll pump, water ring vacuum pump, vacuum unit and other vacuum systems.

New plant plHangZhou

The company’s products have been for a number of food, medicine, refrigeration, drying plants and a number of transformer related equipment manufacturers for vacuum equipment. The products are widely used in vacuum drying and dehydration, kerosene vapor phase drying, vacuum impregnation, vacuum metallurgy, vacuum coating, vacuum evaporation, vacuum concentration, oil and gas recovery, etc.

High precision machining equipment

The company cooperates with many scientific research institutions and universities, such as ZheJiang University, China University of petroleum, ZheJiang Institute of mechanical design, etc.with colleges and universities to research and develop core technologies, and owns dozens of independent intellectual property patents.Our technology is leading, the product quality is stable, the product has a good reputation in China’s domestic market, is sold all over the country, and is exported to Europe, America, Africa, the Middle East and Southeast Asia,We adhering to the basic tenet of quality, reputation and service, the company takes leading-edge technology of vacuum pump as its own responsibility, and wholeheartedly serves customers of vacuum equipment application in various industries with rigorous working attitude and professional working style.

Product quality wins consumer cooperationIn shipmentISO 9001Certificate of hi-tech Enterprise

Welcome to send your needs, we will provide you with the best service,

provide the greatest help!!!

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Lifetime Paid Service
Warranty: One Year
Oil or Not: Oil Free
Structure: Roots Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Customization:
Available

|

screw vane pump

Are there environmentally friendly options for screw vacuum pumps?

Yes, there are environmentally friendly options available for screw vacuum pumps. Here’s a detailed explanation of the eco-friendly features and considerations associated with screw vacuum pumps:

1. Oil-Free Operation:

One of the key environmentally friendly features of screw vacuum pumps is their ability to operate without the use of oil. Traditional vacuum pumps, such as rotary vane pumps or liquid ring pumps, often require oil for lubrication and sealing. However, oil-free screw vacuum pumps eliminate the need for oil, resulting in cleaner and more environmentally friendly operation. Oil-free pumps can be particularly beneficial in applications where the pumped gases come into direct contact with the process or need to remain free from oil contamination.

2. Reduced Emissions:

Screw vacuum pumps contribute to reduced emissions compared to certain other types of pumps. By eliminating oil from the operation, there is no risk of oil carryover or vapor emissions that could adversely affect the environment. This is especially important in applications where the pumped gases contain volatile compounds, as oil-free screw vacuum pumps help prevent the release of harmful substances into the atmosphere. Additionally, screw vacuum pumps with built-in gas and vapor ballast options can further reduce emissions by facilitating the extraction of condensable vapors and preventing their release into the environment.

3. Energy Efficiency:

Energy efficiency is a crucial factor in environmentally friendly operation. Screw vacuum pumps are known for their high efficiency, which translates into reduced energy consumption. By minimizing power requirements, energy-efficient screw vacuum pumps help conserve energy and lower greenhouse gas emissions. Choosing pumps with advanced control systems, variable speed drives, or frequency converters can further enhance energy efficiency by allowing precise control and optimization of pump performance based on demand.

4. Noise Reduction:

Screw vacuum pumps often have quieter operation compared to certain other types of pumps. The design of screw pumps, with balanced rotors and reduced internal clearances, helps minimize noise and vibration. Reduced noise levels not only contribute to a more comfortable and quieter working environment but also have positive environmental implications by minimizing noise pollution in surrounding areas.

5. Long Service Life and Durability:

Screw vacuum pumps are typically built with durable materials and have a robust design, resulting in a long service life. Prolonged equipment lifespan reduces the need for frequent replacements, minimizing waste generation and the environmental impact of manufacturing new pumps. Additionally, the durability of screw vacuum pumps translates into fewer maintenance requirements and less material consumption over time.

6. Waste Management:

When it comes to waste management, screw vacuum pumps offer advantages such as reduced oil disposal requirements. Unlike oil-sealed pumps that require regular oil changes and proper disposal of used oil, oil-free screw vacuum pumps eliminate this waste stream. This simplifies waste management processes and reduces the potential environmental hazards associated with oil handling and disposal.

7. Compliance with Environmental Regulations:

Many screw vacuum pump manufacturers prioritize environmental responsibility and design their products to comply with relevant environmental regulations and standards. These may include requirements for energy efficiency, emissions control, noise levels, and material restrictions. By choosing pumps from reputable manufacturers that prioritize environmental considerations, users can ensure the equipment meets or exceeds the necessary environmental compliance requirements.

In summary, environmentally friendly options for screw vacuum pumps include oil-free operation, reduced emissions, energy efficiency, noise reduction, long service life and durability, waste management advantages, and compliance with environmental regulations. By opting for these eco-friendly features, industries can minimize their environmental footprint and contribute to sustainable practices.

screw vane pump

Can screw vacuum pumps be used for vacuum packaging and sealing processes?

Yes, screw vacuum pumps can be used for vacuum packaging and sealing processes. Screw vacuum pumps offer several advantages that make them suitable for these applications. Here’s a detailed explanation:

1. Efficient Evacuation:

Screw vacuum pumps are known for their high pumping speed, which allows them to quickly evacuate the packaging chamber. By removing air and other gases from the packaging environment, screw vacuum pumps create the necessary vacuum conditions for packaging and sealing processes.

2. Consistent Vacuum Levels:

Screw vacuum pumps are capable of maintaining consistent vacuum levels throughout the packaging and sealing process. This is important to ensure reliable and uniform packaging results. The stable vacuum levels achieved by screw vacuum pumps help preserve product quality, extend shelf life, and prevent spoilage or degradation of packaged goods.

3. Control and Automation:

Screw vacuum pumps can be easily integrated into packaging and sealing systems, allowing for precise control and automation of the vacuum process. They can be equipped with sensors, controllers, and programmable logic controllers (PLCs) to monitor and adjust the vacuum levels, packaging parameters, and sealing operations. This enables efficient and repeatable packaging processes.

4. Versatility:

Screw vacuum pumps are versatile and can handle a wide range of packaging materials, including flexible pouches, bags, trays, and rigid containers. They can accommodate different sizes and shapes of packaging, making them suitable for various industries such as food and beverage, pharmaceuticals, electronics, and consumer goods.

5. Oil-Free Operation:

Many screw vacuum pumps are designed to operate without the use of lubricating oil or fluids. This oil-free operation eliminates the risk of oil contamination in the packaging process, making them particularly suitable for applications where cleanliness and hygiene are crucial, such as in the food industry or medical packaging.

6. Reliability and Durability:

Screw vacuum pumps are known for their robust construction and reliable performance. They are designed to handle continuous operation and can withstand the demanding conditions of packaging and sealing processes, including frequent start-stop cycles and exposure to moisture, dust, or other contaminants.

7. Cost-Effectiveness:

Using screw vacuum pumps for vacuum packaging and sealing processes can be cost-effective in the long run. They offer energy-efficient operation, low maintenance requirements, and long service life, resulting in reduced operating costs and improved productivity.

In summary, screw vacuum pumps are well-suited for vacuum packaging and sealing processes. Their efficient evacuation capabilities, ability to maintain consistent vacuum levels, control and automation features, versatility, oil-free operation, reliability, and cost-effectiveness make them a valuable choice for a wide range of industries that require vacuum packaging and sealing of products.

screw vane pump

Can screw vacuum pumps handle both dry and wet processes?

Yes, screw vacuum pumps are capable of handling both dry and wet processes, making them versatile for a wide range of applications. The ability to handle both types of processes depends on the specific design and configuration of the screw vacuum pump, as well as any additional features or accessories that may be incorporated. Here’s a detailed explanation:

Dry Processes:

In dry processes, the screw vacuum pump operates without the presence of liquid or moisture. Dry screw vacuum pumps rely on tight clearances between the rotors (screws) and the pump housing to create an effective seal. This seal prevents gas or vapor from leaking back into the inlet or escaping to the atmosphere. The absence of liquid or moisture in the process stream helps maintain the integrity of the pump’s sealing mechanism and ensures reliable operation. Dry screw vacuum pumps are commonly used in applications where the process gas or vapor is predominantly dry and free from liquid carryover or condensable vapors.

Wet Processes:

In wet processes, the screw vacuum pump encounters liquids or moisture along with gas or vapor. These liquids can be in the form of condensable vapors, liquid carryover, or entrained liquid droplets. To handle wet processes, screw vacuum pumps may incorporate additional features or accessories to prevent damage, maintain performance, and ensure reliable operation. Some common methods used to handle wet processes include:

  • Liquid Seals: Certain screw vacuum pump designs utilize a liquid sealant to create a barrier between the process gas or vapor and the pump’s internal components. The liquid sealant helps prevent gas leakage, provides lubrication, and assists in sealing the clearances between the rotors and housing. This feature enables the pump to handle wet processes effectively by containing the liquid and maintaining proper sealing.
  • Separators and Filters: Screw vacuum pumps can be equipped with separators and filters to separate liquid droplets or solid particles from the gas or vapor stream. These components help protect the pump from potential damage caused by liquid or solid contamination and ensure the efficient operation of the pump.
  • Specific Design Considerations: Screw vacuum pump manufacturers may incorporate design modifications to enhance the pump’s ability to handle wet processes. This can include optimized clearances, corrosion-resistant materials, and specialized coatings or treatments to protect against liquid or moisture exposure.

It’s important to note that the specific capabilities of a screw vacuum pump in handling wet processes may vary between different models and manufacturers. Therefore, when selecting a screw vacuum pump for a wet process application, it is advisable to consult the manufacturer’s specifications, recommendations, and any additional guidance provided to ensure the pump is suitable for the intended process conditions.

In summary, screw vacuum pumps can handle both dry and wet processes, although the specific design and features of the pump may need to be considered for optimal performance in wet applications. Dry screw vacuum pumps are suitable for predominantly dry processes, while wet processes may require the use of liquid seals, separators, filters, or specialized design considerations to handle the presence of liquids or moisture effectively.

China Custom Roots Water Ring Vacuum Unit Dry Screw Vacuum Pump Corrosion-Resistant Stainless Steel High Vacuum   vacuum pump electricChina Custom Roots Water Ring Vacuum Unit Dry Screw Vacuum Pump Corrosion-Resistant Stainless Steel High Vacuum   vacuum pump electric
editor by Dream 2024-05-15

China manufacturer 1 Inches Submersible Water Pump vacuum pump connector

Product Description

 

Installation And Use
Q(D)X series submersible pump consist of pump, seal and motor, and equipmented with protection apparatus, It is designed for clean water, widely used for drawing water from well, farm irrigation, garden, building construction, breeding industry, and daily life. Moreover, it has small volume and light weight, more easy to use.

 

Model  Power  Q.Rated H.Rated Inlet/Outlet G.W. Packing dimension 20GP
[Kw] [HP] [m³/h] [m] [inch] [kg] [mm] [pcs]
QDX1.5-12-0.25F 0.25 0.37 1.5 12 1″ 6.5 380×160×190 2500
QDX1.5-16-0.37F 0.37 0.5 1.5 16 1″ 7.5 380×160×190 2500
QDX1.5-25-0.55F 0.55 0.75 1.5 25 1″ 10 390×180×200 1900
QDX3-18-0.55F 0.55 0.75 3 18 1.25″ 10 390×180×200 1900
QDX10-12-0.55F 0.55 0.75 10 12 1.5″ 10 390×180×200 1900
QDX15-7-0.55F 0.55 0.75 15 7 2″ 10 390×180×200 1900
QDX1.5-32-0.75F 0.75 1 1.5 32 1″ 12 410×195×220 1600
QDX3-24-0.75F 0.75 1 3 24 1.25″ 12 410×195×220 1600
QDX8-18-0.75F 0.75 1 8 18 1.5″ 11.5 410×195×220 1600
QDX10-16-0.75F 0.75 1 10 16 2” 11.5 410×195×220 1600
QDX15-10-0.75F 0.75 1 15 10 2.5” 12 410×195×220 1600
QDX30-6-0.75F 0.75 1 30 6 3″ 12 420×285×220 1100
QDX3-35-1.1F 1.1 1.5 3 35 1″ 13.5 455×205×210 1400
QDX6-26-1.1F 1.1 1.5 6 26 1.5″ 14 465×250×205 1200
QDX15-14-1.1F 1.1 1.5 15 14 2.5″ 15 470×260×225 1000
QDX40-6-1.1F 1.1 1.5 40 6 3″ 15.5 500×280×210 950
QDX25-12-1.5F 1.5 2 25 12 2.5″ 17.5 500×280×210 950
QDX40-9-1.5F 1.5 2 40 9 3″ 18 500×280×210 950

FAQ
A: How about the quality?
Q:We use high quality raw material for production, and 100% QC in producing process before the goods being packed up. we sincerely expect to work with you for long and stable time.

A: What’s your warranty?
Q: One year warranty, detail as your requirement.

A: Could I put my own logo on it?
Q: Sure, we can make your logo after you give us your authorization

A: What’s your payment term?
Q: 30% deposit before producing, 70% TT against BL copy 

A: Can I get a sample to check your quality and how long i can get samples?
Q: yes,very welcome and sample will be finished within 7-14 days.

A: How about the delivery time?
Q: 30-60 days after receipt of deposit. 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Max.Head: 10-30m
Max.Capacity: 100-200 L/min
Driving Type: Motor
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

vacuum pump

What Is the Role of Vacuum Pumps in Semiconductor Manufacturing?

Vacuum pumps play a critical role in semiconductor manufacturing processes. Here’s a detailed explanation:

Semiconductor manufacturing involves the production of integrated circuits (ICs) and other semiconductor devices used in various electronic applications. Vacuum pumps are used extensively throughout the semiconductor manufacturing process to create and maintain the required vacuum conditions for specific manufacturing steps.

Here are some key roles of vacuum pumps in semiconductor manufacturing:

1. Deposition Processes: Vacuum pumps are used in deposition processes such as physical vapor deposition (PVD) and chemical vapor deposition (CVD). These processes involve depositing thin films of materials onto semiconductor wafers to create various layers and patterns. Vacuum pumps help create a low-pressure environment necessary for precise control of the deposition process, ensuring uniform and high-quality film formation.

2. Etching and Cleaning: Vacuum pumps are utilized in etching and cleaning processes, which involve the removal of specific layers or contaminants from semiconductor wafers. Dry etching techniques, such as plasma etching and reactive ion etching, require a vacuum environment to facilitate the ionization and removal of material. Vacuum pumps aid in creating the necessary low-pressure conditions for efficient etching and cleaning processes.

3. Ion Implantation: Ion implantation is a process used to introduce impurities into specific regions of a semiconductor wafer to modify its electrical properties. Vacuum pumps are used to evacuate the ion implantation chamber, creating the required vacuum environment for accurate and controlled ion beam acceleration and implantation.

4. Wafer Handling and Transfer: Vacuum pumps are employed in wafer handling and transfer systems. These systems utilize vacuum suction to securely hold and manipulate semiconductor wafers during various manufacturing steps, such as loading and unloading from process chambers, robotic transfer between tools, and wafer alignment.

5. Load Lock Systems: Load lock systems are used to transfer semiconductor wafers between atmospheric conditions and the vacuum environment of process chambers. Vacuum pumps are integral components of load lock systems, creating and maintaining the vacuum conditions necessary for wafer transfer while minimizing contamination risks.

6. Metrology and Inspection: Vacuum pumps are utilized in metrology and inspection tools used for characterizing semiconductor devices. These tools, such as scanning electron microscopes (SEMs) and focused ion beam (FIB) systems, often operate in a vacuum environment to enable high-resolution imaging and accurate analysis of semiconductor structures and defects.

7. Leak Detection: Vacuum pumps are employed in leak detection systems to identify and locate leaks in vacuum chambers, process lines, and other components. These systems rely on vacuum pumps to evacuate the system and then monitor for any pressure rise, indicating the presence of leaks.

8. Cleanroom Environment Control: Semiconductor manufacturing facilities maintain cleanroom environments to prevent contamination during the fabrication process. Vacuum pumps are used in the design and operation of the cleanroom ventilation and filtration systems, helping to maintain the required air cleanliness levels by removing particulates and maintaining controlled air pressure differentials.

Vacuum pumps used in semiconductor manufacturing processes are often specialized to meet the stringent requirements of the industry. They need to provide high vacuum levels, precise control, low contamination levels, and reliability for continuous operation.

Overall, vacuum pumps are indispensable in semiconductor manufacturing, enabling the creation of the necessary vacuum conditions for various processes, ensuring the production of high-quality semiconductor devices.

vacuum pump

How Do Vacuum Pumps Assist in Freeze-Drying Processes?

Freeze-drying, also known as lyophilization, is a dehydration technique used in various industries, including pharmaceutical manufacturing. Vacuum pumps play a crucial role in facilitating freeze-drying processes. Here’s a detailed explanation:

During freeze-drying, vacuum pumps assist in the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. The freeze-drying process involves three main stages: freezing, primary drying (sublimation), and secondary drying (desorption).

1. Freezing: In the first stage, the pharmaceutical product is frozen to a solid state. Freezing is typically achieved by lowering the temperature of the product below its freezing point. The frozen product is then placed in a vacuum chamber.

2. Primary Drying (Sublimation): Once the product is frozen, the vacuum pump creates a low-pressure environment within the chamber. By reducing the pressure, the boiling point of water or solvents present in the frozen product is lowered, allowing them to transition directly from the solid phase to the vapor phase through a process called sublimation. Sublimation bypasses the liquid phase, preventing potential damage to the product’s structure.

The vacuum pump maintains a low-pressure environment by continuously removing the water vapor or solvent vapor generated during sublimation. The vapor is drawn out of the chamber, leaving behind the freeze-dried product. This process preserves the product’s original form, texture, and biological activity.

3. Secondary Drying (Desorption): After the majority of the water or solvents have been removed through sublimation, the freeze-dried product may still contain residual moisture or solvents. In the secondary drying stage, the vacuum pump continues to apply vacuum to the chamber, but at a higher temperature. The purpose of this stage is to remove the remaining moisture or solvents through evaporation.

The vacuum pump maintains the low-pressure environment, allowing the residual moisture or solvents to evaporate at a lower temperature than under atmospheric pressure. This prevents potential thermal degradation of the product. Secondary drying further enhances the stability and shelf life of the freeze-dried pharmaceutical product.

By creating and maintaining a low-pressure environment, vacuum pumps enable efficient and controlled sublimation and desorption during the freeze-drying process. They facilitate the removal of water or solvents while minimizing the potential damage to the product’s structure and preserving its quality. Vacuum pumps also contribute to the overall speed and efficiency of the freeze-drying process by continuously removing the vapor generated during sublimation and evaporation. The precise control provided by vacuum pumps ensures the production of stable and high-quality freeze-dried pharmaceutical products.

vacuum pump

How Do You Choose the Right Size Vacuum Pump for a Specific Application?

Choosing the right size vacuum pump for a specific application involves considering several factors to ensure optimal performance and efficiency. Here’s a detailed explanation:

1. Required Vacuum Level: The first consideration is the desired vacuum level for your application. Different applications have varying vacuum level requirements, ranging from low vacuum to high vacuum or even ultra-high vacuum. Determine the specific vacuum level needed, such as microns of mercury (mmHg) or pascals (Pa), and choose a vacuum pump capable of achieving and maintaining that level.

2. Pumping Speed: The pumping speed, also known as the displacement or flow rate, is the volume of gas a vacuum pump can remove from a system per unit of time. It is typically expressed in liters per second (L/s) or cubic feet per minute (CFM). Consider the required pumping speed for your application, which depends on factors such as the volume of the system, the gas load, and the desired evacuation time.

3. Gas Load and Composition: The type and composition of the gas or vapor being pumped play a significant role in selecting the right vacuum pump. Different pumps have varying capabilities and compatibilities with specific gases. Some pumps may be suitable for pumping only non-reactive gases, while others can handle corrosive gases or vapors. Consider the gas load and its potential impact on the pump’s performance and materials of construction.

4. Backing Pump Requirements: In some applications, a vacuum pump may require a backing pump to reach and maintain the desired vacuum level. A backing pump provides a rough vacuum, which is then further processed by the primary vacuum pump. Consider whether your application requires a backing pump and ensure compatibility and proper sizing between the primary pump and the backing pump.

5. System Leakage: Evaluate the potential leakage in your system. If your system has significant leakage, you may need a vacuum pump with a higher pumping speed to compensate for the continuous influx of gas. Additionally, consider the impact of leakage on the required vacuum level and the pump’s ability to maintain it.

6. Power Requirements and Operating Cost: Consider the power requirements of the vacuum pump and ensure that your facility can provide the necessary electrical supply. Additionally, assess the operating cost, including energy consumption and maintenance requirements, to choose a pump that aligns with your budget and operational considerations.

7. Size and Space Constraints: Take into account the physical size of the vacuum pump and whether it can fit within the available space in your facility. Consider factors such as pump dimensions, weight, and the need for any additional accessories or support equipment.

8. Manufacturer’s Recommendations and Expert Advice: Consult the manufacturer’s specifications, guidelines, and recommendations for selecting the right pump for your specific application. Additionally, seek expert advice from vacuum pump specialists or engineers who can provide insights based on their experience and knowledge.

By considering these factors and evaluating the specific requirements of your application, you can select the right size vacuum pump that meets the desired vacuum level, pumping speed, gas compatibility, and other essential criteria. Choosing the appropriate vacuum pump ensures efficient operation, optimal performance, and longevity for your application.

China manufacturer 1 Inches Submersible Water Pump   vacuum pump connector	China manufacturer 1 Inches Submersible Water Pump   vacuum pump connector
editor by Dream 2024-05-15

China Professional Best Price 2xz-4 Direct Drive Rotary Vane Vacuum Water Pump vacuum pump oil near me

Product Description

Best Price 2XZ-4 Direct Drive Rotary Vane Vacuum Water Pump

The pump is a basic device for the extraction of gas from a sealed container. It can be used alone, can also be used for booster pump, diffusion pumps, molecular pump, pump, pre titanium pump pumping pumps, can be used for vacuum drying, CZPT drying, vacuum degassing, vacuum packaging, vacuum adsorption, vacuum forming, coating, packaging, printing, sputtering, vacuum casting instruments, facilities, refrigerator, air conditioning pipeline and laboratory vacuum operation and supporting the use of.

2XZ-B series rotary vane vacuum pump is a two-stage direct-coupled rotary vane vacuum pump. Its working performance consists of 2 parts: high pressure stage and low pressure stage. Its suction port is connected with vacuum equipment, and the gas in the container is operated during operation. A large amount of inhalation and discharge, when the equipment is vacuumed, the high-pressure exhaust is closed, the gas inhaled by the high-pressure stage will be transferred to the second stage, and discharged through the second stage to discharge, and the vacuum equipment can obtain a certain degree of vacuum, 2XZ -B series rotary vane vacuum pump technical parameters are 6×10-2, pump and motor shaft, high speed, small size, compact structure, convenient fluidity, our factory special metal scraper, suitable for diffusion pump The foreline pump, precision matching, laboratory, medicine, food packaging, electronic, electric light source and other units.

Feature
1. due to the low noise design and precision processing, thus achieving a low noise;
2. the preparation of special design of gas valve, prevent water pump oil, pump oil extended the use of time;
3. the use of similar international product design, small size, light weight, low noise, easy to start;
4.equipped with automatic double anti oil return device, never return oil;
5. small diameter 2XZ-4 vacuum pump with vacuum drying box, CZPT drying machine, printing machinery;
6. can be equipped with small diameter adapter, KF interface, flange interface.
7. Oil-mist filter is optional

Technical Parameter

Model 2XZ-0.5 2XZ-1 2XZ-2
2XZ-2B
2XZ-4
2XZ-4B
2XZ-6B 2XZ-8B 2XZ-15B
Pump rate (L/S)  m3/h 0.5 1 2 4 / 14.4 6 8 15
Ultimate pressure 
(Pa)
Partial pressure ≤6×10-2 ≤6×10-2 ≤6×10-2 ≤6×10-2 ≤6×10-2 ≤6×10-2 ≤6×10-2
Full pressure ≤1.33 ≤1.33 ≤1.33 ≤1.33 ≤1.33 ≤1.33 ≤1.33
Rotary speed(r/min) 1400 1400 1400 1400 1400 1400 1400
Working voltage(V) 220 220 110/220/380 110/220/380 110/220/380 110/220/380 110/220/380
Motor power(Kw) 0.18 0.25 0.37 0.55 0.75 1.1 1.5
Inlet port diameter (OD)  (mm) Φ20 Φ20 Φ30 Φ30 Φ40 Φ40 Φ40
KF-16 KF-16 KF-25 KF-25 KF-25 KF-25 KF-25
Noise(dBA) 65 58 62 66 66 66 66
Oil capacity (L) 0.6 0.75 1 1 2 3 4
Oil temperature rising (°C) 40 45 45 ≯45 ≯45 ≯45 ≯45
Dimensions(mm) 440×140×240 460×140×240 480×140×240 520×140×250 565×200×342 650×240×430 770×240×430
GW/NW(Kg) 17/16 17/16 22/20 24/22 45/40 65/60 65/60

Packaging & Shipping

Package Detail

1) Wooden packing
2) The goods can be shipped by sea, air or train, small goods or spare parts will be shipped by express.
3) You can choose your own freight forwardwe as well.
4) Door to Door Delivery to save your energy and time. We’ll take the all risks during transportation.
Shipping Details

1) AMERICA:3-8 working days.
2) ASIAN:3-8 working days.
3) EUROPE:5-10 working days.
4) OCEANIA:4-9 working days.
5) AFRICA:7-13woring day.

 

Company Profile

i’an Xihu (West Lake) Dis. Biotechnology Co., Ltd, is a famous manufacturer of Lab equipment located in the central China. Now has XIHU (WEST LAKE) DIS., CZPT 2 CZPT brand trademarks. The main products include ultra-high temperature and high pressure reactor, high pressure photochemical reactor, supercritical high pressure reactor, high pressure glass reactor, micro high pressure reactor, high pressure ultrasonic reactor, Ultra-high temperature hydrothermal synthesis reactor, photocatalytic reactor, visual catalytic reactor, hydrothermal synthesis reactor, rotary evaporator, parallel synthesis reactor, high and low temperature circulator, high and low temperature high pressure tubular reactor and other equipment and so on.

Specialize in this field for more than 20 years,TKA brand instrument has own high reputation in more than 70 countries and regions, provide technical support for tens of thousands organizations to solve problems within their research, special for university, research institutes, industries, inspection agencies, etc. Promoting technology progress and improving human life is CZPT social mission.

 

Exhibition Show

Certifications

FAQ

Q1:Are you trading company or manufacturer?
A1:We are professional manufacture of lab equipment and we have our own factory which is a high-tech enterprise integrating R&D, production and sales. And welcome to visit our factory.

Q2: How long is your delivery time?
A2: Usually, delivery time is 30-45 days after receiving your payment.

Q3:How to shipping the replacement parts?
A3:We will according the actual situation to choose the suitable shipping ways. For small parts we shippin by Express.

Q4: How about your quality warranty ?
A4: Normally all CZPT products are supplied with a warranty of 12 Months from the date of shipment.

Q5: Do you accept OEM and ODM orders?
A5: Yes,We accept.

Q6:What is your terms of payment?
A6:Payment≤15,000USD, 100% in advance. Payment≥15,000USD, 70% T/T in advance, balance before shipment.
(If you are concerned about payment security for the first order, we advise you can place Trade Assurance Order via Made in China. you will get 100% payment refund if we can’t meet agreed delivery time.)

Q7:Can we visit your factory?
A7: Welcome visit our factory.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technical Support
Warranty: 1year
Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Customization:
Available

|

Vacuum Pump

Basic knowledge of vacuum pump

A vacuum pump is a device that draws gas molecules from a sealed volume and maintains a partial vacuum. Its main job is to create a relative vacuum within a given volume or volumes. There are many types of vacuum pumps. This article will describe how they work, their types, and their applications.

How it works

A vacuum pump is a mechanical device that removes gas from a system by applying it to a higher pressure than the surrounding atmosphere. The working principle of the vacuum pump is based on the principle of gas transfer and entrapment. Vacuum pumps can be classified according to their vacuum level and the number of molecules that can be removed per cubic centimeter of space. In medium to high vacuum, viscous flow occurs when gas molecules collide with each other. Increasing the vacuum causes molecular or transitional flow.
A vacuum pump has several components that make it a versatile tool. One of the main components is the motor, which consists of a rotor and a stator. The rotor and stator contain coils that generate a magnetic field when excited. Both parts must be mounted on a base that supports the weight of the pump. There is also an oil drain that circulates oil throughout the system for lubrication and cooling purposes.
Another type of vacuum pump is the liquid ring vacuum pump. It works by positioning the impeller above or below the blades. Liquid ring pumps can also adjust the speed of the impeller. However, if you plan to use this type of pump, it is advisable to consult a specialist.
Vacuum pumps work by moving gas molecules to areas of higher or lower pressure. As the pressure decreases, the removal of the molecules becomes more difficult. Industrial vacuum systems require pumps capable of operating in the 1 to 10-6 Torr range.

Type

There are different types of vacuum pumps. They are used in many different applications, such as laboratories. The main purpose of these pumps is to remove air or gas molecules from the vacuum chamber. Different types of pumps use different techniques to achieve this. Some types of pumps use positive displacement, while others use liquid ring, molecular transfer, and entrapment techniques.
Some of these pumps are used in industrial processes, including making vacuum tubes, CRTs, electric lights, and semiconductor processing. They are also used in motor vehicles to power hydraulic components and aircraft. The gyroscope is usually controlled by these pumps. In some cases, they are also used in medical settings.
How a vacuum pump works depends on the type of gas being pumped. There are three main types: positive displacement, negative displacement, and momentum transfer. Depending on the type of lubrication, these principles can be further divided into different types of pumps. For example, dry vacuum pumps are less sensitive to gases and vapors.
Another type of vacuum pump is called a rotary vane pump. This type of pump has two main components, the rotor and the vacuum chamber. These pumps work by rotating moving parts against the pump casing. The mating surfaces of rotary pumps are designed with very small clearances to prevent fluid leakage to the low pressure side. They are suitable for vacuum applications requiring low pulsation and high continuous flow. However, they are not suitable for use with grinding media.
There are many types of vacuum pumps and it is important to choose the right one for your application. The type of pump depends on the needs and purpose of the system. The larger ones can work continuously, and the smaller ones are more suitable for intermittent use.
Vacuum Pump

Apply

Vacuum pumps are used in a variety of industrial and scientific processes. For example, they are used in the production of vacuum tubes, CRTs, and electric lamps. They are also used in semiconductor processing. Vacuum pumps are also used as mechanical supports for other equipment. For example, there may be multiple vacuum pumps on the engine of a motor vehicle that powers the hydraulic components of an aircraft. In addition, they are often used in fusion research.
The most common type of vacuum pump used in the laboratory is the rotary vane pump. It works by directing airflow through a series of rotating blades in a circular housing. As the blades pass through the casing, they remove gas from the cavity and create a vacuum. Rotary pumps are usually single or double-stage and can handle pressures between 10 and 6 bar. It also has a high pumping speed.
Vacuum pumps are also used to fabricate solar cells on wafers. This involves a range of processes including doping, diffusion, dry etching, plasma-enhanced chemical vapor deposition, and bulk powder generation. These applications depend on the type of vacuum pump used in the process, and the vacuum pump chosen should be designed for the environment.
While there are several types of vacuum pumps available, their basic working principles remain the same. Each has different functions and capacities, depending on the type of vacuum. Generally divided into positive displacement pump, rotary vane pump, liquid ring pump, and molecular delivery pump.

Maintenance

The party responsible for general maintenance and repairs is the Principal Investigator (PI). Agknxs must be followed and approved by the PI and other relevant laboratory personnel. The Agknx provides guidelines for routine maintenance of vacuum pump equipment. Agknxs are not intended to replace detailed routine inspections of vacuum pump equipment, which should be performed by certified/qualified service personnel. If the device fails, the user should contact PI or RP for assistance.
First, check the vacuum pump for any loose parts. Make sure the inlet and outlet pressure gauges are open. When the proper pressure is shown, open the gate valve. Also, check the vacuum pump head and flow. Flow and head should be within the range indicated on the label. Bearing temperature should be within 35°F and maximum temperature should not exceed 80°F. The vacuum pump bushing should be replaced when it is severely worn.
If the vacuum pump has experienced several abnormal operating conditions, a performance test should be performed. Results should be compared to reference values ​​to identify abnormalities. To avoid premature pump failure, a systematic approach to predictive maintenance is essential. This is a relatively new area in the semiconductor industry, but leading semiconductor companies and major vacuum pump suppliers have yet to develop a consistent approach.
A simplified pump-down test method is proposed to evaluate the performance of vacuum pumps. The method includes simulated aeration field tests and four pump performance indicators. Performance metrics are evaluated under gas-loaded, idle, and gas-load-dependent test conditions.
Vacuum Pump

Cost

The total cost of a vacuum pump consists of two main components: the initial investment and ongoing maintenance costs. The latter is the most expensive component, as it consumes about four to five times the initial investment. Therefore, choosing a more energy-efficient model is a good way to reduce the total system cost and payback period.
The initial cost of a vacuum pump is about $786. Oil-lubricated rotary vane pumps are the cheapest, while oil-free rotary vane pumps are slightly more expensive. Non-contact pumps also cost slightly more. The cost of a vacuum pump is not high, but it is a factor that needs careful consideration.
When choosing a vacuum pump, it is important to consider the type of gas being pumped. Some pumps are only suitable for pumping air, while others are designed to pump helium. Oil-free air has a different pumping rate profile than air. Therefore, you need to consider the characteristics of the medium to ensure that the pump meets your requirements. The cost of a vacuum pump can be much higher than the purchase price, as the daily running and maintenance costs can be much higher.
Lubricated vacuum pumps tend to be more durable and less expensive, but they may require more maintenance. Maintenance costs will depend on the type of gas that needs to be pumped. Lighter gases need to be pumped slowly, while heavier gases need to be pumped faster. The maintenance level of a vacuum pump also depends on how often it needs to be lubricated.
Diaphragm vacuum pumps require regular maintenance and oil changes. The oil in the diaphragm pump should be changed every 3000 hours of use. The pump is also resistant to chemicals and corrosion. Therefore, it can be used in acidic and viscous products.

China Professional Best Price 2xz-4 Direct Drive Rotary Vane Vacuum Water Pump   vacuum pump oil near me		China Professional Best Price 2xz-4 Direct Drive Rotary Vane Vacuum Water Pump   vacuum pump oil near me
editor by Dream 2024-05-15

China high quality Energy Saving Water Cooled Screw Vacuum Pump vacuum pump brakes

Product Description

Vacuum pump is used in the field of chemical and pharmaceutical factory

Product Description

Dry screw vacuum pump, is the use of a pair of screw, made in the pump shell synchronous high-speed reverse rotation of the effects of the suction and exhaust and suction device, 2 screw fine dynamic balancing correction, and is supported by bearings, is installed in the pump shell, between screw and screw has a certain gap, so the pump work, no friction between each other, smooth running, low noise, Working chamber without lubricating oil, therefore, dry screw pump can remove a lot of steam and a small amount of dust gas occasions, higher limit vacuum, lower power consumption, energy saving, maintenance-free and other advantages.

Our Advantages

There is no medium in the working chamber, which can obtain a clean vacuum.
. No clearance between rotating parts, high speed operation, small overall volume.

There is no compression in the gas, suitable for extraction of coagulable gas.

Can remove a lot of steam and a small amount of dust gas occasions.
. High vacuum, the ultimate vacuum up to 1 Pa.

Screw material is high strength special material, material density, wear resistance, stable performance.

No friction rotating parts, low noise.
. Simple structure, convenient maintenance.
Wider range of use: corrosive environment can be used.

No oil consumption, no water.

Pump gas directly discharged from the pump body, no pollution of water, no environmental pressure, more convenient gas recovery.

It can be composed of oil-free unit with Roots pump and molecular pump.

 

Typical Use

——Oil and gas recovery.    ——Biological medicine ——Food Processing —— Single crystal furnace
——Vacuum forming ——Vacuum flame refining ——Electronic photovoltaic. ——Semiconductor synthesis

Product Parameters

Type                                                                             Basic parameters
Pumping speed
m3/h
Presure limit(Pa)  Power (kW)  revolution (rpm) Inlet caliber
mm
outlet caliber mm Cooling water volume
L/min
noise dB(A) Overall dimension
(length*width*height)
mm
LGV-180 180 5 4 2900 40 40 2 < 78 1157x375x734
LGV-250 250 5 5.5 2900 50 40 5.5 <78 1462x417x820
LGV-360 360 5 7.5 2900 50 40 4 W78 1462x455x820
LGV-540 540 5 11 2900 65 50 8 W80 1578x543x860
LGV-720 720 5 15 2900 80 65 10 <80 1623x562x916
LGV-1100 1100 5 22 2900 100 80 14 w 80 1866x598x1050
LG V-1800 1800 5 37 2900 150 100 20 w 80 2092×951 x 1150

Characteristic Curve

Detailed Photos

 

General Manager Speech

Deeply cultivate the vacuum technology, and research,develop and manufacture the vacuum equipment to provide the best solution in the vacuum field and make the vacuum application easier.

Company Profile

ZheJiang Kaien Vacuum Technology Co., Ltd. is a high-tech enterprise integrating R & D, production and operation of vacuum equipment. The company has strong technical force, excellent equipment and considerate after-sales service. The product manufacturing process is managed in strict accordance with IS09001 quality system. It mainly produces and sells screw vacuum pump, roots pump, claw vacuum pump, runoff vacuum pump, scroll pump, water ring vacuum pump, vacuum unit and other vacuum systems.

 New plant plHangZhou

The company’s products have been for a number of food, medicine, refrigeration, drying plants and a number of transformer related equipment manufacturers for vacuum equipment. The products are widely used in vacuum drying and dehydration, kerosene vapor phase drying, vacuum impregnation, vacuum metallurgy, vacuum coating, vacuum evaporation, vacuum concentration, oil and gas recovery, etc.

 High precision machining equipment

The company cooperates with colleges and universities to research and develop core technologies, and owns dozens of independent intellectual property patents. Adhering to the basic tenet of quality, reputation and service, the company takes leading-edge technology of vacuum pump as its own responsibility, and wholeheartedly serves customers of vacuum equipment application in various industries with rigorous working attitude and professional working style.
 

Product quality wins consumer cooperation

                             

In shipment

 ISO 9001

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Lifetime Paid Service
Warranty: One Year
Oil or Not: Oil Free
Structure: Screw
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: High Vacuum
Customization:
Available

|

screw vane pump

Are there environmentally friendly options for screw vacuum pumps?

Yes, there are environmentally friendly options available for screw vacuum pumps. Here’s a detailed explanation of the eco-friendly features and considerations associated with screw vacuum pumps:

1. Oil-Free Operation:

One of the key environmentally friendly features of screw vacuum pumps is their ability to operate without the use of oil. Traditional vacuum pumps, such as rotary vane pumps or liquid ring pumps, often require oil for lubrication and sealing. However, oil-free screw vacuum pumps eliminate the need for oil, resulting in cleaner and more environmentally friendly operation. Oil-free pumps can be particularly beneficial in applications where the pumped gases come into direct contact with the process or need to remain free from oil contamination.

2. Reduced Emissions:

Screw vacuum pumps contribute to reduced emissions compared to certain other types of pumps. By eliminating oil from the operation, there is no risk of oil carryover or vapor emissions that could adversely affect the environment. This is especially important in applications where the pumped gases contain volatile compounds, as oil-free screw vacuum pumps help prevent the release of harmful substances into the atmosphere. Additionally, screw vacuum pumps with built-in gas and vapor ballast options can further reduce emissions by facilitating the extraction of condensable vapors and preventing their release into the environment.

3. Energy Efficiency:

Energy efficiency is a crucial factor in environmentally friendly operation. Screw vacuum pumps are known for their high efficiency, which translates into reduced energy consumption. By minimizing power requirements, energy-efficient screw vacuum pumps help conserve energy and lower greenhouse gas emissions. Choosing pumps with advanced control systems, variable speed drives, or frequency converters can further enhance energy efficiency by allowing precise control and optimization of pump performance based on demand.

4. Noise Reduction:

Screw vacuum pumps often have quieter operation compared to certain other types of pumps. The design of screw pumps, with balanced rotors and reduced internal clearances, helps minimize noise and vibration. Reduced noise levels not only contribute to a more comfortable and quieter working environment but also have positive environmental implications by minimizing noise pollution in surrounding areas.

5. Long Service Life and Durability:

Screw vacuum pumps are typically built with durable materials and have a robust design, resulting in a long service life. Prolonged equipment lifespan reduces the need for frequent replacements, minimizing waste generation and the environmental impact of manufacturing new pumps. Additionally, the durability of screw vacuum pumps translates into fewer maintenance requirements and less material consumption over time.

6. Waste Management:

When it comes to waste management, screw vacuum pumps offer advantages such as reduced oil disposal requirements. Unlike oil-sealed pumps that require regular oil changes and proper disposal of used oil, oil-free screw vacuum pumps eliminate this waste stream. This simplifies waste management processes and reduces the potential environmental hazards associated with oil handling and disposal.

7. Compliance with Environmental Regulations:

Many screw vacuum pump manufacturers prioritize environmental responsibility and design their products to comply with relevant environmental regulations and standards. These may include requirements for energy efficiency, emissions control, noise levels, and material restrictions. By choosing pumps from reputable manufacturers that prioritize environmental considerations, users can ensure the equipment meets or exceeds the necessary environmental compliance requirements.

In summary, environmentally friendly options for screw vacuum pumps include oil-free operation, reduced emissions, energy efficiency, noise reduction, long service life and durability, waste management advantages, and compliance with environmental regulations. By opting for these eco-friendly features, industries can minimize their environmental footprint and contribute to sustainable practices.

screw vane pump

How do you select the right size and capacity of a screw vacuum pump for specific applications?

When selecting the right size and capacity of a screw vacuum pump for specific applications, several factors need to be considered. Here’s a detailed explanation of the key considerations:

1. Required Vacuum Level:

Determine the desired vacuum level needed for the application. Different applications have varying requirements for vacuum levels, ranging from low vacuum to high vacuum. The selected screw vacuum pump should be capable of achieving and maintaining the required vacuum level throughout the process.

2. Gas Load and Flow Rate:

Assess the gas load and flow rate of the application. The gas load refers to the volume or mass of gas to be evacuated, while the flow rate is the rate at which the gas needs to be pumped. Consider factors such as the type of gas or vapor, its composition, and the required evacuation time. This information helps determine the pumping speed and capacity required from the screw vacuum pump.

3. Process Conditions:

Take into account the process conditions, including the temperature and pressure at the inlet and outlet of the pump. The screw vacuum pump should be capable of handling the process conditions without compromising its performance or reliability. Consider factors such as the presence of corrosive gases, high temperatures, or particulate matter that may require special material selection or additional accessories.

4. System Leakage and Conductance:

Evaluate the system leakage and conductance. System leakage refers to any unintended gas leakage points within the vacuum system, which can affect the pump’s performance. Conductance refers to the ability of the system to conduct gas flow and is influenced by factors such as the diameter and length of the piping, presence of valves or restrictions, and the configuration of the system. Properly accounting for system leakage and conductance ensures that the selected screw vacuum pump can handle the overall system requirements.

5. Safety Factors and Future Expansion:

Consider safety factors and future expansion needs. It is advisable to select a screw vacuum pump with a slightly higher capacity than the calculated requirements to account for any unexpected variations or future expansion of the process. This provides a safety margin and ensures that the pump can handle any potential increases in gas load or system demands.

6. Manufacturer’s Specifications and Expert Advice:

Refer to the manufacturer’s specifications, technical data, and performance curves of different screw vacuum pump models. These specifications provide information about the pumping speed, ultimate vacuum, power requirements, and other relevant parameters. Additionally, consult with experts or manufacturers to get their recommendations based on their expertise and experience in the field.

7. Cost Considerations:

Take into account the cost considerations associated with the selected screw vacuum pump, including the initial investment, operational costs, maintenance requirements, and the overall cost-effectiveness for the specific application. Assess the long-term value and return on investment (ROI) provided by the selected pump.

In summary, selecting the right size and capacity of a screw vacuum pump involves considering the required vacuum level, gas load and flow rate, process conditions, system leakage and conductance, safety factors and future expansion, manufacturer’s specifications, and cost considerations. By carefully evaluating these factors and consulting with experts, it is possible to choose a screw vacuum pump that meets the specific requirements of the application, ensuring efficient and reliable vacuum performance.

screw vane pump

How does the design of a screw vacuum pump contribute to its efficiency?

The design of a screw vacuum pump plays a crucial role in determining its efficiency. Several design features and considerations contribute to the overall efficiency of a screw vacuum pump. Here’s a detailed explanation of how the design influences its efficiency:

1. Positive Displacement Principle:

Screw vacuum pumps operate based on the positive displacement principle. The pump consists of two intermeshing screws (rotors) that rotate in opposite directions. As the screws rotate, they trap and transport gas or vapor from the inlet to the outlet. This positive displacement action ensures a consistent flow rate regardless of pressure differentials, resulting in efficient evacuation and faster process cycles.

2. Rotor Profile and Geometry:

The profile and geometry of the rotors significantly impact the efficiency of a screw vacuum pump. The rotors are designed with precise helical profiles that create a sealing line along the length of the screws. This sealing line ensures minimal leakage and maximizes the volumetric efficiency of the pump. The optimal rotor profile minimizes internal leakage and maximizes the gas compression ratio, leading to improved overall efficiency.

3. Clearances and Sealing Mechanism:

Tight clearances between the rotors and the pump housing are critical for efficient operation. The design of a screw vacuum pump incorporates precise tolerances to maintain proper clearances. These tight clearances minimize backflow and gas leakage, ensuring that the pumped gas or vapor is efficiently transported from the inlet to the outlet. Additionally, the sealing mechanism, such as O-rings or liquid seals, further enhances the sealing efficiency and minimizes internal leakage.

4. Cooling and Lubrication:

Screw vacuum pumps require effective cooling and lubrication systems to maintain their efficiency. The design includes cooling jackets or channels that allow for efficient heat dissipation, preventing overheating and ensuring stable operation. Lubrication systems provide proper lubrication to minimize friction between the rotors and housing, reducing energy losses and improving overall efficiency.

5. Materials and Construction:

The choice of materials and construction of a screw vacuum pump impact its efficiency and reliability. The pump components are typically made from materials that offer good resistance to wear, corrosion, and high temperatures. The selection of appropriate materials ensures minimal internal losses, reduces energy consumption, and extends the lifespan of the pump.

6. Control Systems and Automation:

Modern screw vacuum pumps often incorporate advanced control systems and automation features. These systems optimize the pump’s performance by adjusting operating parameters such as speed, cooling, and lubrication based on real-time process conditions. By optimizing these parameters, the pump can operate at its highest efficiency under different operating conditions, resulting in energy savings and improved overall efficiency.

7. System Integration and Optimization:

The design of a screw vacuum pump also considers its integration into the overall vacuum system. Proper system integration, including the sizing and selection of ancillary equipment such as separators, filters, and valves, ensures optimal performance and efficiency. The design also accounts for the reduction of pressure losses, minimizing the energy required for gas compression and improving overall system efficiency.

In summary, the design of a screw vacuum pump contributes significantly to its efficiency. The positive displacement principle, rotor profile and geometry, clearances and sealing mechanism, cooling and lubrication systems, materials and construction, control systems and automation, and system integration all play crucial roles in maximizing the pump’s efficiency. By optimizing these design aspects, screw vacuum pumps can achieve high efficiency, leading to improved productivity, energy savings, and reduced operating costs in various industrial applications.

China high quality Energy Saving Water Cooled Screw Vacuum Pump   vacuum pump brakesChina high quality Energy Saving Water Cooled Screw Vacuum Pump   vacuum pump brakes
editor by Dream 2024-05-14

China Best Sales Industrial High Power Double Stage Water Liquid Ring Vacuum Pump for Sale vacuum pump engine

Product Description

Industrial High Power Double Stage Water Liquid Ring Vacuum Pump for Sale

Product Description

Product Parameters

Model

2BV2060

2BV2061

2BV2070

2BV2071

2BV5110

2BV5111

2BV5121

2BV5131

2BV5161

Pumping speed(m³/min)

27

52

80

110

165

230

280

400

500

Ultimate pressure(Pa)

3300

3300

3300

3300

3300

3300

3300

3300

3300

flow of supiying water(L/min)

2

2

2.5

4.2

6.7

8.3

10

15

20

Connections of inlet(outlet)

1″

1″

1(1/2)”

1(1/2)”

50

50

65

65

80

Pumping size(mm)

455X186X250

476X186X250

545X223X270

566X223X300

637X340X361

672X340X371

771X382X385

852X382X427

1044X450X521

Noise level dB(A)

62

65

66

72

63

68

69

73

74

Weight (with oil filling) (kg)

31

35

56

65

103

117

149

205

331

Motor Power(Kw)

1.1

1.5

3

4

4

5.5

7.5

11

15

Motor Voltage/motor base frequency(V/Hz)

380/50

380/50

380/50

380/50

380/50

380/50

380/50

380/50

380/50

Nominal Motor speed(rpm)

2840

2840

2860

2880

1430

1440

1440

1450

970

Nominal Motor current(A)

2.6

3.4

6.2

8.1

8.8

11.5

15.4

22.3

30.1

Type of protection(IP)

IP55

IP55

IP55

IP55

IP55

IP55

IP55

IP55

IP55

Detailed Photos

 

Company Profile

HangZhou Sifang Vacuum Equipment Co., Ltd. specializes in the production of vacuum furnaces, vacuum pumps, steel drums and other products.”Sifang” is the registered trademark of the company’s products.

our company is 1 professional vacuum equipment manufacturer in HangZhou, China. We specialize in vacuum pumps, furnaces, systems and components for diverse applications. We produce rotary vane vacuum pumps, water ring vacuum pumps, reciprocating vacuum pumps, roots vacuum pump units, vacuum heat treatment furnaces, vacuum aluminum brazing furnaces, high temperature brazing fur- naces, vacuum sintering furnaces, monocrystalline silicon furnaces and other products. All these vacuum equipment are widely used in aviation, aerospace, military, railway, automobile, machinery, mold, electronics, metallurgy, scientific research and other fields.

We have professional engineer support, high efficiency sales team and competitive price superiority, and attract customers from all over the world, we export to over 40 countries, including Europe, Poland, Serbia, Turkey, Russia, USA, Mexico, Brazil, India, Thailand, Middle east and South Africa.

After several years’ development, We have achieved great progress, we are equipped with the AutomaticCNCmachines and multi-func- tion testing machines. Our R&D department provide the strong tech- nical support and enable us to receive some 0 E M, O D M projects. We can produce at least 3000 sets vacuum equipment per year. With our innovative and energy-efficient vacuum equipment that is put to work in a multitude of manufacturing and process applica- tions, we also offer you a comprehensive suite of CHINAMFG ser- vices to complement our products.

FAQ

1.Q: Are you a factory or trading company?
A: We are a factory and we have professional team of workers,Designers and inspectors.

2.Q:Do you accept custom?
A:Of course.We have professional teams who make your designs,photos,imagines and OEM orders into real production.

3.Q:What’s your advantages?
A: Quick response to your enquiry,
High quality control,
Reasonable price,
Timely delivery,
Excellent after-sales service,
OEM/ODM are welcome

4.Q:What’s your shipping terms?
A:If you need to ship by air,we can use DHL,UPS,FedEx,TNT or EMS.If you need to ship by sea,we have many good forwarders to work with,they can provide the best price for you.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 1 Year
Oil or Not: Oil
Structure: Vacuum Pump
Exhauster Method: Entrapment Vacuum Pump
Vacuum Degree: Vacuum
Customization:
Available

|

vacuum pump

Can Vacuum Pumps Be Used in the Aerospace Sector?

Vacuum pumps indeed have various applications in the aerospace sector. Here’s a detailed explanation:

Vacuum pumps play a crucial role in several areas of the aerospace industry, supporting various processes and systems. Some of the key applications of vacuum pumps in the aerospace sector include:

1. Space Simulation Chambers: Vacuum pumps are used in space simulation chambers to replicate the low-pressure conditions experienced in outer space. These chambers are utilized for testing and validating the performance and functionality of aerospace components and systems under simulated space conditions. Vacuum pumps create and maintain the necessary vacuum environment within these chambers, allowing engineers and scientists to evaluate the behavior and response of aerospace equipment in space-like conditions.

2. Propellant Management: In space propulsion systems, vacuum pumps are employed for propellant management. They help in the transfer, circulation, and pressurization of propellants, such as liquid rocket fuels or cryogenic fluids, in both launch vehicles and spacecraft. Vacuum pumps assist in creating the required pressure differentials for propellant flow and control, ensuring efficient and reliable operation of propulsion systems.

3. Environmental Control Systems: Vacuum pumps are utilized in the environmental control systems of aircraft and spacecraft. These systems are responsible for maintaining the desired atmospheric conditions, including temperature, humidity, and cabin pressure, to ensure the comfort, safety, and well-being of crew members and passengers. Vacuum pumps are used to regulate and control the cabin pressure, facilitating the circulation of fresh air and maintaining the desired air quality within the aircraft or spacecraft.

4. Satellite Technology: Vacuum pumps find numerous applications in satellite technology. They are used in the fabrication and testing of satellite components, such as sensors, detectors, and electronic devices. Vacuum pumps help create the necessary vacuum conditions for thin film deposition, surface treatment, and testing processes, ensuring the performance and reliability of satellite equipment. Additionally, vacuum pumps are employed in satellite propulsion systems to manage propellants and provide thrust for orbital maneuvers.

5. Avionics and Instrumentation: Vacuum pumps are involved in the production and testing of avionics and instrumentation systems used in aerospace applications. They facilitate processes such as thin film deposition, vacuum encapsulation, and vacuum drying, ensuring the integrity and functionality of electronic components and circuitry. Vacuum pumps are also utilized in vacuum leak testing, where they help create a vacuum environment to detect and locate any leaks in aerospace systems and components.

6. High Altitude Testing: Vacuum pumps are used in high altitude testing facilities to simulate the low-pressure conditions encountered at high altitudes. These testing facilities are employed for evaluating the performance and functionality of aerospace equipment, such as engines, materials, and structures, under simulated high altitude conditions. Vacuum pumps create and control the required low-pressure environment, allowing engineers and researchers to assess the behavior and response of aerospace systems in high altitude scenarios.

7. Rocket Engine Testing: Vacuum pumps are crucial in rocket engine testing facilities. They are utilized to evacuate and maintain the vacuum conditions in engine test chambers or nozzles during rocket engine testing. By creating a vacuum environment, these pumps simulate the conditions experienced by rocket engines in the vacuum of space, enabling accurate testing and evaluation of engine performance, thrust levels, and efficiency.

It’s important to note that aerospace applications often require specialized vacuum pumps capable of meeting stringent requirements, such as high reliability, low outgassing, compatibility with propellants or cryogenic fluids, and resistance to extreme temperatures and pressures.

In summary, vacuum pumps are extensively used in the aerospace sector for a wide range of applications, including space simulation chambers, propellant management, environmental control systems, satellite technology, avionics and instrumentation, high altitude testing, and rocket engine testing. They contribute to the development, testing, and operation of aerospace equipment, ensuring optimal performance, reliability, and safety.

vacuum pump

How Do Vacuum Pumps Assist in Freeze-Drying Processes?

Freeze-drying, also known as lyophilization, is a dehydration technique used in various industries, including pharmaceutical manufacturing. Vacuum pumps play a crucial role in facilitating freeze-drying processes. Here’s a detailed explanation:

During freeze-drying, vacuum pumps assist in the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. The freeze-drying process involves three main stages: freezing, primary drying (sublimation), and secondary drying (desorption).

1. Freezing: In the first stage, the pharmaceutical product is frozen to a solid state. Freezing is typically achieved by lowering the temperature of the product below its freezing point. The frozen product is then placed in a vacuum chamber.

2. Primary Drying (Sublimation): Once the product is frozen, the vacuum pump creates a low-pressure environment within the chamber. By reducing the pressure, the boiling point of water or solvents present in the frozen product is lowered, allowing them to transition directly from the solid phase to the vapor phase through a process called sublimation. Sublimation bypasses the liquid phase, preventing potential damage to the product’s structure.

The vacuum pump maintains a low-pressure environment by continuously removing the water vapor or solvent vapor generated during sublimation. The vapor is drawn out of the chamber, leaving behind the freeze-dried product. This process preserves the product’s original form, texture, and biological activity.

3. Secondary Drying (Desorption): After the majority of the water or solvents have been removed through sublimation, the freeze-dried product may still contain residual moisture or solvents. In the secondary drying stage, the vacuum pump continues to apply vacuum to the chamber, but at a higher temperature. The purpose of this stage is to remove the remaining moisture or solvents through evaporation.

The vacuum pump maintains the low-pressure environment, allowing the residual moisture or solvents to evaporate at a lower temperature than under atmospheric pressure. This prevents potential thermal degradation of the product. Secondary drying further enhances the stability and shelf life of the freeze-dried pharmaceutical product.

By creating and maintaining a low-pressure environment, vacuum pumps enable efficient and controlled sublimation and desorption during the freeze-drying process. They facilitate the removal of water or solvents while minimizing the potential damage to the product’s structure and preserving its quality. Vacuum pumps also contribute to the overall speed and efficiency of the freeze-drying process by continuously removing the vapor generated during sublimation and evaporation. The precise control provided by vacuum pumps ensures the production of stable and high-quality freeze-dried pharmaceutical products.

vacuum pump

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

3. Scroll Vacuum Pumps:

– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

4. Piston Vacuum Pumps:

– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

5. Turbo Molecular Vacuum Pumps:

– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

6. Diffusion Vacuum Pumps:

– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

7. Cryogenic Vacuum Pumps:

– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

China Best Sales Industrial High Power Double Stage Water Liquid Ring Vacuum Pump for Sale   vacuum pump engine	China Best Sales Industrial High Power Double Stage Water Liquid Ring Vacuum Pump for Sale   vacuum pump engine
editor by Dream 2024-05-13

China Custom Durable Liquid Pumps 2be1 305 Water Aspirator Vacuum Pump vacuum pump and compressor

Product Description

Application scope and characteristics:

Greentech International (Xihu (West Lake) Dis.) Co., Ltd is the professional vacuum pump supplier. 2BE1 series water ring vacuum pumps and compressors are the products with high efficiency and economic power, which are manufactured by our company integrating with the advanced technology of the imported products from Germany.

These series products adopt CHINAMFG and single action structure and have many advantages, such as, compact structure, convenient maintenance, reliable running, high efficiency and economic power.

The main characteristics of 2BE1 series products:

All the bearings are the imported products with the brand name of CHINAMFG orNTN for ensuring the precise orientation and the high stability during the working of the pump.

The material of the impeller is QT400 nodular iron or stainless steel for ensuring the stability when the pump works under the rigorous condition and can extend the lifetime of the pump.

The casing is made of steel or stainless steel plates to extend the lifetime of the 2BE1 series pumps.

The shaft bushing is made of stainless steel to improve the lifetime of the pump 5 times than the normal material.

The V-belt pulley (when the pump is driven by the belt) is used the high precise pulley with taper bushing to keep the reliability of the pump and extend its life. And it is also easy to mantle and dismantle.

The coupling is used to drive the pump directly. The flexible part connecting the 2 half coupling is made of polyurethane that makes the pump more reliable.

The unique design to set the separator above the pump saves the space and decreases the noise efficiently.

All the parts are cast by the resin sands that make the pump surface very smooth. It is not necessary to cover the surface of the pumps with putty and gives out the heat efficiently.

The mechanical seals (optional) are used the imported products to avoid the leakage when the pump works for a long time.

Type Speed
(Drive type)
r/min
Shaft power
kW
Motor power
kW
Motor
type
Limited vacuum
mbar
  Weight
(Whole set)
kg
Suction capacity
m 3 /h m 3 /min
2BE1 151-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
10.8
7.2
9.2
13.2
14.8
15
11
11
15
18.5
Y160L-4
Y160M-4
Y160M-4
Y160L-4
Y180M-4
33mbar
(-0.098MPa)
405
300
360
445
470
6.8
5.0
6.0
7.4
7.8
469
428
444
469
503
2BE1 152-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
12.5
8.3
10.5
15.0
17.2
15
11
15
18.5
22
Y160L-4
Y160M-4
Y160L-4
Y180M-4
Y180L-4
33mbar
(-0.098MPa)
465
340
415
510
535
7.8
5.7
6.9
8.5
8.9
481
437
481
515
533
2BE1 153-0 1450(D)
1100(V)
1300(V)
1625(V)
1750(V)
16.3
10.6
13.6
19.6
22.3
18.5
15
18.5
22
30
Y180M-4
Y160L-4
Y180M-4
Y180L-4
Y200L-4
33mbar
(-0.098MPa)
600
445
540
660
700
10.0
7.4
9.0
11.0
11.7
533
480
533
551
601
2BE1 202-0 970(D)
790(V)
880(v)
1100(V)
1170(V)
1300(V)
17
14
16
22
25
30
22
18.5
18.5
30
30
37
Y200L2-6
Y180M-4
Y180M-4
Y200L-4
Y200L-4
Y225S-4
33mbar
(-0.098MPa)
760
590
670
850
890
950
12.7
9.8
11.2
14.2
14.8
15.8
875
850
850
940
945
995
2BE1 203-0 970(D)
790(V)
880(V)
1100(V)
1170(V)
1300(V)
27
20
23
33
37
45
37
30
30
45
45
55
Y250M-6
Y200L-4
Y200L-4
Y225M-4
Y225M-4
Y250M-4
33mbar
(-0.098MPa)
1120
880
1000
1270
1320
1400
18.7
14.7
16.7
21.2
22.0
23.3
1065
995
995
1080
1085
1170
2BE1 252-0 740(D)
558(V)
660(V)
832(V)
885(V)
938(V)
38
26
31.8
49
54
60
45
30
37
55
75
75
Y280M-8
Y200L-4
Y225S-4
Y250M-4
Y280S-4
Y280S-4
33mbar
(-0.098MPa)
1700
1200
1500
1850
2000
2100
28.3
20.0
25.0
30.8
33.3
35.0
1693
1460
1515
1645
1805
1805
2BE1 253-0 740(D)
560(V)
660(V)
740(V)
792(V)
833(V)
885(V)
938(V)
54
37
45
54
60
68
77
86
75
45
55
75
75
90
90
110
Y315M-8
Y225M-4
Y250M-4
Y280S-4
Y280S-4
Y280M-4
Y280M-4
Y315S-4
33mbar
(-0.098MPa)
2450
1750
2140
2450
2560
2700
2870
3571
40.8
29.2
35.7
40.8
42.7
45.0
47.8
50.3
2215
1695
1785
1945
1945
2055
2060
2295
2BE1 303-0 740(D)
590(D)
466(V)
521(V)
583(V)
657(V)
743(V)
98
65
48
54
64
78
99
110
75
55
75
75
90
132
Y315L2-8
Y315L2-10
Y250M-4
Y280S-4
Y280S-4
Y280M-4
Y315M-4
33mbar
(-0.098MPa)
4000
3200
2500
2800
3100
3580
4000
66.7
53.3
41.7
46.7
51.7
59.7
66.7
3200
3200
2645
2805
2810
2925
3290
2BE1 305-1
2BE1 306-1
740(D)
590(D)
490(V)
521(V)
583(V)
657(V)
743(V)
102
70
55
59
68
84
103
132
90
75
75
90
110
132
Y355M1-8
Y355M1-10
Y280S-4
Y280S-4
Y280M-4
Y315S-4
Y315M-4
160mbar
(-0.085MPa)
4650
3750
3150
3320
3700
4130
4650
77.5
62.5
52.5
55.3
61.2
68.8
77.5
3800
3800
2950
3000
3100
3300
3450
2BE1 353-0 590(D)
390(V)
415(V)
464(V)
520(V)
585(V)
620(V)
660(V)
121
65
70
81
97
121
133
152
160
75
90
110
132
160
160
185
Y355L2-10
Y280S-4
Y280M-4
Y315S-4
Y315M-4
Y315L1-4
Y315L1-4
Y315L2-4
33mbar
(-0.098MPa)
5300
3580
3700
4100
4620
5200
5500
5850
88.3
59.7
61.7
68.3
77.0
86.7
91.7
97.5
4750
3560
3665
3905
4040
4100
4100
4240
2BE1 355-1
2BE1 356-1
590(D)
390(V)
435(V)
464(V)
520(V)
555(V)
585(V)
620(V)
130
75
86
90
102
115
130
145
160
90
110
110
132
132
160
185
Y355L2-10
Y280M-4
Y315S-4
Y315S-4
Y315M-4
Y315M-4
Y315L1-4
Y315L2-4
160mbar
(-0.085MPa)
6200
4180
4600
4850
5450
5800
6100
6350
103.3
69.7
76.7
80.8
90.8
98.3
101.7
105.8
5000
3920
4150
4160
4290
4300
4350
4450
2BE1 403-0 330(V)
372(V)
420(V)
472(V)
530(V)
565(V)
97
110
131
160
203
234
132
132
160
200
250
280
Y315M-4
Y315M-4
Y315L1-4
Y315L2-4
Y355M2-4
Y355L1-4
33mbar
(-0.098MPa)
5160
5700 6470
7380
8100
8600
86.0
95.0
107.8
123.0
135.0
143.3
5860
5870
5950
6190
6630
6800
2BE1 405-1
2BE1 406-1
330(V)
372(V)
420(V)
472(V)
530(V)
565(V)
100
118
140
170
206
235
132
160
185
200
250
280
Y315M-4
Y315L1-4
Y315L2-4
Y315L2-4
Y355M2-4
Y355L1-4
160mbar
(-0.085MPa)
6000
6700
7500
8350
9450
15710
100.0
111.7
125.0
139.2
157.5
168.3
5980
6070
6200
6310
6750
6920

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Kinetic Vacuum Pump
Vacuum Degree: High Vacuum
Work Function: Pre-Suction Pump
Working Conditions: Wet
Customization:
Available

|

vacuum pump

How Are Vacuum Pumps Employed in the Production of Electronic Components?

Vacuum pumps play a crucial role in the production of electronic components. Here’s a detailed explanation:

The production of electronic components often requires controlled environments with low or no atmospheric pressure. Vacuum pumps are employed in various stages of the production process to create and maintain these vacuum conditions. Here are some key ways in which vacuum pumps are used in the production of electronic components:

1. Deposition Processes: Vacuum pumps are extensively used in deposition processes, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), which are commonly employed for thin film deposition on electronic components. These processes involve the deposition of materials onto substrates in a vacuum chamber. Vacuum pumps help create and maintain the necessary vacuum conditions required for precise and controlled deposition of the thin films.

2. Etching and Cleaning: Etching and cleaning processes are essential in the fabrication of electronic components. Vacuum pumps are used to create a vacuum environment in etching and cleaning chambers, where reactive gases or plasmas are employed to remove unwanted materials or residues from the surfaces of the components. The vacuum pumps help evacuate the chamber and ensure the efficient removal of byproducts and waste gases.

3. Drying and Bake-out: Vacuum pumps are utilized in the drying and bake-out processes of electronic components. After wet processes, such as cleaning or wet etching, components need to be dried thoroughly. Vacuum pumps help create a vacuum environment that facilitates the removal of moisture or solvents from the components, ensuring their dryness before subsequent processing steps. Additionally, vacuum bake-out is employed to remove moisture or other contaminants trapped within the components’ materials or structures, enhancing their reliability and performance.

4. Encapsulation and Packaging: Vacuum pumps are involved in the encapsulation and packaging stages of electronic component production. These processes often require the use of vacuum-sealed packaging to protect the components from environmental factors such as moisture, dust, or oxidation. Vacuum pumps assist in evacuating the packaging materials, creating a vacuum-sealed environment that helps maintain the integrity and longevity of the electronic components.

5. Testing and Quality Control: Vacuum pumps are utilized in testing and quality control processes for electronic components. Some types of testing, such as hermeticity testing, require the creation of a vacuum environment for evaluating the sealing integrity of electronic packages. Vacuum pumps help evacuate the testing chambers, ensuring accurate and reliable test results.

6. Soldering and Brazing: Vacuum pumps play a role in soldering and brazing processes for joining electronic components and assemblies. Vacuum soldering is a technique used to achieve high-quality solder joints by removing air and reducing the risk of voids, flux residuals, or oxidation. Vacuum pumps assist in evacuating the soldering chambers, creating the required vacuum conditions for precise and reliable soldering or brazing.

7. Surface Treatment: Vacuum pumps are employed in surface treatment processes for electronic components. These processes include plasma cleaning, surface activation, or surface modification techniques. Vacuum pumps help create the necessary vacuum environment where plasma or reactive gases are used to treat the component surfaces, improving adhesion, promoting bonding, or altering surface properties.

It’s important to note that different types of vacuum pumps may be used in electronic component production, depending on the specific process requirements. Commonly used vacuum pump technologies include rotary vane pumps, turbo pumps, cryogenic pumps, and dry pumps.

In summary, vacuum pumps are essential in the production of electronic components, facilitating deposition processes, etching and cleaning operations, drying and bake-out stages, encapsulation and packaging, testing and quality control, soldering and brazing, as well as surface treatment. They enable the creation and maintenance of controlled vacuum environments, ensuring precise and reliable manufacturing processes for electronic components.

vacuum pump

Can Vacuum Pumps Be Used in the Production of Solar Panels?

Yes, vacuum pumps are extensively used in the production of solar panels. Here’s a detailed explanation:

Solar panels, also known as photovoltaic (PV) panels, are devices that convert sunlight into electricity. The manufacturing process of solar panels involves several critical steps, many of which require the use of vacuum pumps. Vacuum technology plays a crucial role in ensuring the efficiency, reliability, and quality of solar panel production. Here are some key areas where vacuum pumps are utilized:

1. Silicon Ingot Production: The first step in solar panel manufacturing is the production of silicon ingots. These ingots are cylindrical blocks of pure crystalline silicon that serve as the raw material for solar cells. Vacuum pumps are used in the Czochralski process, which involves melting polycrystalline silicon in a quartz crucible and then slowly pulling a single crystal ingot from the molten silicon. Vacuum pumps create a controlled environment by removing impurities and preventing contamination during the crystal growth process.

2. Wafering: After the silicon ingots are produced, they undergo wafering, where the ingots are sliced into thin wafers. Vacuum pumps are used in wire saws to create a low-pressure environment that helps to cool and lubricate the cutting wire. The vacuum also assists in removing the silicon debris generated during the slicing process, ensuring clean and precise cuts.

3. Solar Cell Production: Vacuum pumps play a significant role in various stages of solar cell production. Solar cells are the individual units within a solar panel that convert sunlight into electricity. Vacuum pumps are used in the following processes:

– Diffusion: In the diffusion process, dopants such as phosphorus or boron are introduced into the silicon wafer to create the desired electrical properties. Vacuum pumps are utilized in the diffusion furnace to create a controlled atmosphere for the diffusion process and remove any impurities or gases that may affect the quality of the solar cell.

– Deposition: Thin films of materials such as anti-reflective coatings, passivation layers, and electrode materials are deposited onto the silicon wafer. Vacuum pumps are used in various deposition techniques like physical vapor deposition (PVD) or chemical vapor deposition (CVD) to create the necessary vacuum conditions for precise and uniform film deposition.

– Etching: Etching processes are employed to create the desired surface textures on the solar cell, which enhance light trapping and improve efficiency. Vacuum pumps are used in plasma etching or wet etching techniques to remove unwanted material or create specific surface structures on the solar cell.

4. Encapsulation: After the solar cells are produced, they are encapsulated to protect them from environmental factors such as moisture and mechanical stress. Vacuum pumps are used in the encapsulation process to create a vacuum environment, ensuring the removal of air and moisture from the encapsulation materials. This helps to achieve proper bonding and prevents the formation of bubbles or voids, which could degrade the performance and longevity of the solar panel.

5. Testing and Quality Control: Vacuum pumps are also utilized in testing and quality control processes during solar panel production. For example, vacuum systems can be used for leak testing to ensure the integrity of the encapsulation and to detect any potential defects or leaks in the panel assembly. Vacuum-based measurement techniques may also be employed for assessing the electrical characteristics and efficiency of the solar cells or panels.

In summary, vacuum pumps are integral to the production of solar panels. They are used in various stages of the manufacturing process, including silicon ingot production, wafering, solar cell production (diffusion, deposition, and etching), encapsulation, and testing. Vacuum technology enables precise control, contamination prevention, and efficient processing, contributing to the production of high-quality and reliable solar panels.vacuum pump

Can Vacuum Pumps Be Used in Laboratories?

Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here’s a detailed explanation:

Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:

1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.

2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.

3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.

4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.

5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.

6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).

7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.

Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.

China Custom Durable Liquid Pumps 2be1 305 Water Aspirator Vacuum Pump   vacuum pump and compressor	China Custom Durable Liquid Pumps 2be1 305 Water Aspirator Vacuum Pump   vacuum pump and compressor
editor by Dream 2024-05-09

China OEM Vacuum Prime Assistant Diesel Engine Split Case Dewatering Centrifugal Water/Sea Water Pump vacuum pump design

Product Description

Brief introduction:

ZSS type pump is a new generation of high performance single-stage double suction centrifugal split pumps.They are mainly used in delivering liquids of the water plant,air conditioner circulation water,heating pipe network system,building water supply,irrigation and drainage of pump stations,power plants,industrial water supply system,fire protection,ships industry and mine.

Parameters:
 

Flow rate: Q=22~16236 m3/h
Total head: H=7~300 m
Speed: n=980rpm/2950rpm
Solid parameter: ≤80 mg/L 
Temperature: T=-20~200 ºC
Pump diameter: 80~900 mm

Features:

  1. Using excellent hydraulic model, the efficiency of the pump is 2-3% higher than that of the same type, and the operating cost of the pump is reduced.  
  2. Unique high temperature design, the pump adopts intermediate support, thickened pump body, sealed cooling, bearing thin oil lubrication, so that the pump can be applied to the high 200ºC operating conditions, especially suitable for heating pipe network requirements  .
  3. The pump body part can be installed vertically or horizontally according to different working conditions, and the seal can be mechanical seal or packing seal.  
  4. The NPSHr is reduced by 1-3 m.
  5. It is unnecessary to adjust mechanical seals,so it is very easy and simple to replace them.
  6. It is rapid and simple to assemble and dismount the rotor parts due to using elastic prestress assembling.

Structure:

  1. The distance between the 2 ends of the pump is short, the pump runs stably, the vibration noise is small, and the speed can be increased properly, so that the pump can adapt to a wider range.  
  2. The inlet and outlet are in the same straight line, so that the pipeline layout is simple, convenient and beautiful.  
  3. The same rotor can run in reverse, reducing the risk of water hammer damage to the pump.
  4. It is unnecessary to make adjustment to any clearance when assembling.

Structure drawing is as below

  1. Construction section of type COS pump

          2. Construction section of type COS (L) pump
     

    Configuration:

    Application:

    1. It is suitable to pump clean water and fluids have close physical and chemical characters of water.
    2. widely used in sections of mining,city water supply,power plant water supply and drainage,farm irrigation and various water conservancy project.

     

    /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    Max.Head: 140 M
    Max.Capacity: 7590
    Driving Type: Motor
    Customization:
    Available

    |

    .shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

    Shipping Cost:

    Estimated freight per unit.







    about shipping cost and estimated delivery time.
    Payment Method:







     

    Initial Payment



    Full Payment
    Currency: US$
    Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

    Vacuum Pump

    Select vacuum pump

    When choosing a vacuum pump, there are several things to consider. Diaphragm, scroll and Roots pumps are available. These pumps work similarly to each other, but they have some notable differences. Learn more about each type to make the right decision for your needs.

    Diaphragm vacuum pump

    Diaphragm vacuum pumps are very reliable and efficient for moving liquids. They are also compact and easy to handle. They can be used in a variety of applications, from laboratory workstations to large vacuum ovens. Diaphragm vacuum pumps are available worldwide. Advantages of this pump include low noise and corrosion resistance.
    Diaphragm vacuum pumps work by increasing the chamber volume and decreasing the pressure. The diaphragm draws fluid into the chamber, diverting it back when it returns to its starting position. This hermetic seal allows them to transfer fluids without the need for lubricants.
    Diaphragm vacuum pumps are the most efficient cleaning option and are easy to maintain. They do not produce oil, waste water or particles, which are common problems with other types of pumps. In addition, diaphragm pumps are low maintenance and have no sliding parts in the air path.
    The simple design of diaphragm vacuum pumps makes them popular in laboratories. Oil-free construction makes it an economical option and is available in a variety of styles. They also have a variety of optional features. Diaphragm pumps are also chemically resistant, making them ideal for chemical laboratories.
    Diaphragm vacuum pumps have speeds ranging from a few microns per minute (m3/h) to several m3/h. Some models have variable speed motors that reduce pumping speed when not in use. This feature extends their service interval. Standard diaphragm pumps are also popular in pharmaceutical and medical procedures. In addition, they are used in vacuum mattresses and cushions.

    Scroll vacuum pump

    Dry scroll vacuum pumps have many advantages over other types of vacuum pumps. Its compact design makes it ideal for a variety of general-purpose vacuum applications. They also offer oil-free operation. Additionally, many of these pumps feature chemically resistant PTFE components for increased chemical resistance.
    These pumps are used in a variety of environments including laboratories, OEM equipment, R&D and medical applications. The single-stage design of these pumps makes them versatile and cost-effective. They are also suitable for a range of high field and radiation environments. Scroll pumps are also available in electronics-free and three-phase versions.
    Oil-free scroll vacuum pumps are an excellent choice for those who don’t want the noise and mess associated with reciprocating pumps. Oil-free scroll pumps contain two helical scrolls interwoven in a helical motion that creates strong suction and directs steam to the exhaust. Because they do not require oil, they require minimal maintenance and downtime.
    Oil-free scroll vacuum pumps are suitable for low to medium vacuum systems. Their durability and flexibility also make them suitable for many other applications. While they are often associated with dry vacuum pumps, they can also be used in chemical and analytical applications. Oil-free scroll pumps are also considered environmentally friendly.
    The HiScroll range consists of three dry-sealed scroll pumps with nominal pumping speeds ranging from 6 to 20 m3/h. They feature advanced cutting edge sealing technology and reduce power requirements. They are also compact and noiseless, making them an excellent choice in quiet work environments.
    Vacuum Pump

    Roots Pump

    Roots vacuum pumps are an important part of vacuum systems in various industries. These pumps are used to generate high vacuum in a variety of applications including degassing, rolling and vacuum metallurgy. They are also used in vacuum distillation, concentration and drying in the pharmaceutical, food and chemical industries.
    These pumps are made of non-magnetized rotors that sit in the vacuum of the drive shaft. In addition, the stator coils are fan-cooled, eliminating the need for shaft seals. These pumps are typically used in applications involving high purity and toxic gases.
    The theoretical pumping speed of a Roots pump depends on the gas type and outlet pressure. Depending on the size and power of the pump, it can range from 200 cubic meters per hour (m3/h) to several thousand cubic meters per hour. Typical Roots pumps have pumping speeds between 10 and 75.
    Roots pumps are designed to reach high pressures in a relatively short period of time. This enables them to significantly reduce vacation time. Their compact design also makes them quiet. They also require no oil or moving parts, making them ideal for a variety of applications. However, they also have some limitations, including relatively high service costs and poor pumping performance at atmospheric pressure.
    The RUVAC Roots pump is a versatile and efficient vacuum pump. It is based on the dry compressor roots principle already used in many vacuum technologies. This principle has been used in many different applications, including vacuum furnaces and vacuum coating. The combination of the Roots pump and the backing vacuum pump will increase the pumping speed at low pressure and expand the working range of the backing vacuum pump.

    Electric vacuum pump

    Electric vacuum pumps have many applications. They help move waste and debris in various processes and also help power instruments. These pumps are used in the automotive, scientific and medical industries. However, there are some important factors to consider before buying. In this article, we will discuss some important factors to consider.
    First, you should consider the base pressure of the pump. Some pumps can reach a base pressure of 1 mbar when new, while others can reach a base pressure of 1 x 10-5 mbar. The higher the base pressure, the more energy is required to reverse atmospheric pressure.
    Another important consideration is noise. Electric vacuum pumps need to be quiet. Especially for hybrid and electric vehicles, low noise is very important. Therefore, electric vacuum pumps with low noise characteristics have been developed. The pump’s integrated motor was developed in-house to avoid expensive vibration decoupling elements. Therefore, it exhibits high structure-borne noise decoupling as well as low airborne noise emissions. This makes the electric vacuum pump suitable for mounting on body components without disturbing vibrations.
    Depending on the type of application, electric vacuum pumps can be used for workholding, clamping or clamping applications. They can also be used for solid material transfer. The electric pump with 20 gallon tank has a maximum vacuum of 26″ Hg. It also houses a 1,200 square inch sealed vacuum suction cup. It also has a coolant trap.
    The automotive electric vacuum pump market was estimated at USD 1.11 billion in 2018. Electric vacuum pumps are used in automobiles for many different applications. These pumps provide vacuum assistance to a variety of automotive systems, including brake boosters, headlight doors, heaters, and air conditioning systems. They are also quieter than traditional piston pumps.
    Vacuum Pump

    Cryogenic vacuum pump

    Cryogenic vacuum pumps are used in many different processes, including vacuum distillation, electron microscopy, and vacuum ovens. These pumps feature a thin-walled shaft and housing to minimize heat loss from the motor. They are also capable of high speed operation. High-speed bearings increase the hydraulic efficiency of the pump while minimizing heating of the process fluid. Cryopumps also come in the form of laboratory dewars and evaporators.
    A key feature of a cryopump is its ability to span a wide pressure range. Typically, such pumps have a maximum pressure of 12 Torr and a minimum pressure of 0.8 Torr. However, some cryopumps are capable of pumping at higher pressures than this. This feature extends pump life and limits gas loading.
    Before using a cryopump, you need to make sure the system is cold and the valve is closed. The gas in the chamber will then start to condense on the cold array of the pump. This condensation is the result of the latent heat released by the gas.
    Cryogenic vacuum pumps are usually equipped with a Polycold P Cryocooler, which prevents the backflow of water through the pump. Such coolers are especially useful in load lock systems. As for its functionality, SHI Cryogenics Group offers two different styles of cryopumps. These systems are ideal for demanding flat panel, R&D and coating applications. They are available in sizes up to 20 inches and can be configured for automatic regeneration or standard settings.
    The cryogenic vacuum pump market is segmented by application and geography. The report identifies major global companies, their shares and trends. It also includes product introductions and sales by region.

    China OEM Vacuum Prime Assistant Diesel Engine Split Case Dewatering Centrifugal Water/Sea Water Pump   vacuum pump design		China OEM Vacuum Prime Assistant Diesel Engine Split Case Dewatering Centrifugal Water/Sea Water Pump   vacuum pump design
    editor by Dream 2024-05-08

    China factory Stainless Steel Water Ring Vacuum Pump and Compressor for Corrosive Liquid a/c vacuum pump

    Product Description

    Product Description

    2BE series water ring vacuum pump and compressor, based on many years of scientific research results and production experience, combined with the international advanced technology of similar products, developed high efficiency and energy saving products, usually used for pumping no CHINAMFG particles, insoluble in water, no corrosion gas, in order to form a vacuum and pressure in a closed container. By changing the structure material, it can also be used to suck corrosive gas or to use corrosive liquid as working fluid. Widely used in papermaking, chemical, petrochemical, light industry, pharmaceutical, food, metallurgy, building materials, electrical appliances, coal washing, mineral processing, chemical fertilizer and other industries.

    This series of pumps uses the CHINAMFG single action structure, has the advantages of simple structure, convenient maintenance, reliable operation, high efficiency and energy saving, and can adapt to large displacement, load impact fluctuation and other harsh conditions.
    The key components, such as the distribution plate, impeller and pump shaft, have been optimized to simplify the structure, improve the performance and achieve energy saving. The welding impeller is used, the blade is pressed and formed once, and the shape line is reasonable; Hub processing, fundamentally solve the dynamic balance problem. Impeller and pump shaft are fitted with hot filling interference, reliable performance. It runs smoothly. After the impeller is welded, the whole is subjected to good heat treatment, and the blade has good toughness, so that the impact resistance and bending resistance of the blade can be fundamentally guaranteed, and it can adapt to the bad working conditions of load impact fluctuation.
    2BE series pump, with air and water separator, multi-position exhaust port, pump cover is provided with exhaust valve overhaul window, impeller and distribution plate clearance through positioning bearing gland at both ends of the adjustment, easy to install and use, simple operation, easy maintenance.

    Pump structure

    The performance curve of this series of pumps is measured under the following working conditions: the suction medium is 20°C saturated air, the working liquid temperature is 15°C, the exhaust pressure is 1013mbar, and the deviation of soil is 10%.

    Structure declaration

    2BEA-10-25 Structure diagram

    1.Flat key 2. Shaft 3. Oil deflector 4. Bearing cap 5. Bearings 6. Bearing bracket 7.Brasque cover
    8.Brasque body 9. Brasque ring 10. Brasque 11.Valve plate 12. Valve block
    13.Front distribution plate 14.Pump body 15. Impeller 16. O seal ring.
    17.Back distribution plate 18. Side cover. 19. Flat key 20. Axle sleeve 21. Elastic collar
    22.Water retaining ring 23. Adjusting washer 24. Rear bearing body 25. Bearing screw cap
    26.Bearing 27. Bolt

     

    2BEA-30-70 Structure diagram

    1.Flat key 2. Shaft 3. Oil deflector 4. Front bearing retainer 5. Front bearing body
    6. Front bearing inner cover 7. Front side cover 8. Brasque cover 9. Brasque body 10. Brasque ring
    11. Brasque 12. Front distribution plate 13. Pump body 14. Impeller 15. O seal ring
    16. Valve block 17. Valve plate 18. Back distribution plate 19. Axle sleeve 20. Flat key
    21. Back side cover 22. Water retaining ring 23. Rear bearing inner cover 24. Bearing
    25. Adjusting washer 26. Oil block 27. Rear bearing outer cover 28. Back bearing body
    29. Oil baffle disc 30. Elastic retainer or circular spiral
     

    Product Parameters

    Model 2BEA SERIES
    Minimum suction absolute pressure (hPa) 33-160
    Suction intensity(m³/min) Absolute inhalation capacity 60hPa 3,95-336
    Absolute inhalation capacity 100hPa 4.58-342
    Absolute inhalation capacity 200hPa 4.87-352
    Absolute inhalation capacity 400hPa 4.93-353
    Max. shaft power(kw) 7-453
    Motor power(kw) 11-560
    Speed(rpm) 197-1750
    Weight(kg) 235-11800
    Size 795*375*355mm-3185*2110*2045mm

     

    Model 2BEC SERIES
    Minimum suction absolute pressure (hPa) 160
    Suction intensity(m³/min) Absolute inhalation capacity 60hPa 63-1700
    Absolute inhalation capacity 100hPa 64-1738
    Absolute inhalation capacity 200hPa 65-1785
    Absolute inhalation capacity 400hPa 67-1800
    Absolute inhalation capacity 550hPa 68-1830
    Max. shaft power(kw) 61-2100
    Motor power(kw) 75-2240
    Speed(rpm) 105-610
    Weight(kg) 2930-57500
    Size 2102*1320*1160mm-5485*3560*3400mm

    Detailed Photos

    Operation site

     

    Company presentation

    Product gallery

    RFQ

    Q1. What is your terms of packing? 
    A: Generally, we pack our goods in neutral export wooden case . If you have legally registered patent, we can pack the goods in
    wooden case with your own marks after getting your authorization letters.

    Q2. What is your termsof payment? 
    A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance. 

    Q3. What is your terms of delivery? 
    A: EXW, FOB, CFR, CIF, etc.

    Q4. How about your delivery time?
    A: Generally, it will take from 10 dasys to 30 days after receiving your advance payment according to the pump’s material. The
    specific delivery time also depends on the items and the quantity of your order.

    Q5. Can you produce according to the samples?
    A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures. 

    Q6. What is your sample policy? 
    A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

    Q7. Do you test all your goods before delivery?
    A: Yes, we have 100% test the pumps before delivery .

    Q8: How do you make our business long-term and good relationship? 
    A. We keep good quality and competitive price to ensure our customers benefit ; 
    B. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they are from.

      /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    After-sales Service: Online
    Warranty: 1 Years
    Oil or Not: Oil Free
    Structure: Rotary Vacuum Pump
    Exhauster Method: Kinetic Vacuum Pump
    Vacuum Degree: High Vacuum
    Customization:
    Available

    |

    vacuum pump

    Can Vacuum Pumps Be Used for Vacuum Packaging?

    Yes, vacuum pumps can be used for vacuum packaging. Here’s a detailed explanation:

    Vacuum packaging is a method used to remove air from a package or container, creating a vacuum environment. This process helps to extend the shelf life of perishable products, prevent spoilage, and maintain product freshness. Vacuum pumps play a crucial role in achieving the desired vacuum level for effective packaging.

    When it comes to vacuum packaging, there are primarily two types of vacuum pumps commonly used:

    1. Single-Stage Vacuum Pumps: Single-stage vacuum pumps are commonly used for vacuum packaging applications. These pumps use a single rotating vane or piston to create a vacuum. They can achieve moderate vacuum levels suitable for most packaging requirements. Single-stage pumps are relatively simple in design, compact, and cost-effective.

    2. Rotary Vane Vacuum Pumps: Rotary vane vacuum pumps are another popular choice for vacuum packaging. These pumps utilize multiple vanes mounted on a rotor to create a vacuum. They offer higher vacuum levels compared to single-stage pumps, making them suitable for applications that require deeper levels of vacuum. Rotary vane pumps are known for their reliability, consistent performance, and durability.

    When using vacuum pumps for vacuum packaging, the following steps are typically involved:

    1. Preparation: Ensure that the packaging material, such as vacuum bags or containers, is suitable for vacuum packaging and can withstand the vacuum pressure without leakage. Place the product to be packaged inside the appropriate packaging material.

    2. Sealing: Properly seal the packaging material, either by heat sealing or using specialized vacuum sealing equipment. This ensures an airtight enclosure for the product.

    3. Vacuum Pump Operation: Connect the vacuum pump to the packaging equipment or directly to the packaging material. Start the vacuum pump to initiate the vacuuming process. The pump will remove the air from the packaging, creating a vacuum environment.

    4. Vacuum Level Control: Monitor the vacuum level during the packaging process using pressure gauges or vacuum sensors. Depending on the specific packaging requirements, adjust the vacuum level accordingly. The goal is to achieve the desired vacuum level suitable for the product being packaged.

    5. Sealing and Closure: Once the desired vacuum level is reached, seal the packaging material completely to maintain the vacuum environment. This can be done by heat sealing the packaging material or using specialized sealing mechanisms designed for vacuum packaging.

    6. Product Labeling and Storage: After sealing, label the packaged product as necessary and store it appropriately, considering factors such as temperature, humidity, and light exposure, to maximize product shelf life.

    It’s important to note that the specific vacuum level required for vacuum packaging may vary depending on the product being packaged. Some products may require a partial vacuum, while others may require a more stringent vacuum level. The choice of vacuum pump and the control mechanisms employed will depend on the specific vacuum packaging requirements.

    Vacuum pumps are widely used in various industries for vacuum packaging applications, including food and beverage, pharmaceuticals, electronics, and more. They provide an efficient and reliable means of creating a vacuum environment, helping to preserve product quality and extend shelf life.

    vacuum pump

    Can Vacuum Pumps Be Used for Chemical Distillation?

    Yes, vacuum pumps are commonly used in chemical distillation processes. Here’s a detailed explanation:

    Chemical distillation is a technique used to separate or purify components of a mixture based on their different boiling points. The process involves heating the mixture to evaporate the desired component and then condensing the vapor to collect the purified substance. Vacuum pumps play a crucial role in chemical distillation by creating a reduced pressure environment, which lowers the boiling points of the components and enables distillation at lower temperatures.

    Here are some key aspects of using vacuum pumps in chemical distillation:

    1. Reduced Pressure: By creating a vacuum or low-pressure environment in the distillation apparatus, vacuum pumps lower the pressure inside the system. This reduction in pressure lowers the boiling points of the components, allowing distillation to occur at temperatures lower than their normal boiling points. This is particularly useful for heat-sensitive or high-boiling-point compounds that would decompose or become thermally degraded at higher temperatures.

    2. Increased Boiling Point Separation: Vacuum distillation increases the separation between the boiling points of the components, making it easier to achieve a higher degree of purification. In regular atmospheric distillation, the boiling points of some components may overlap, leading to less effective separation. By operating under vacuum, the boiling points of the components are further apart, improving the selectivity and efficiency of the distillation process.

    3. Energy Efficiency: Vacuum distillation can be more energy-efficient compared to distillation under atmospheric conditions. The reduced pressure lowers the required temperature for distillation, resulting in reduced energy consumption and lower operating costs. This is particularly advantageous when dealing with large-scale distillation processes or when distilling heat-sensitive compounds that require careful temperature control.

    4. Types of Vacuum Pumps: Different types of vacuum pumps can be used in chemical distillation depending on the specific requirements of the process. Some commonly used vacuum pump types include:

    – Rotary Vane Pumps: Rotary vane pumps are widely used in chemical distillation due to their ability to achieve moderate vacuum levels and handle various gases. They work by using rotating vanes to create chambers that expand and contract, enabling the pumping of gas or vapor.

    – Diaphragm Pumps: Diaphragm pumps are suitable for smaller-scale distillation processes. They use a flexible diaphragm that moves up and down to create a vacuum and compress the gas or vapor. Diaphragm pumps are often oil-free, making them suitable for applications where avoiding oil contamination is essential.

    – Liquid Ring Pumps: Liquid ring pumps can handle more demanding distillation processes and corrosive gases. They rely on a rotating liquid ring to create a seal and compress the gas or vapor. Liquid ring pumps are commonly used in chemical and petrochemical industries.

    – Dry Screw Pumps: Dry screw pumps are suitable for high-vacuum distillation processes. They use intermeshing screws to compress and transport gas or vapor. Dry screw pumps are known for their high pumping speeds, low noise levels, and oil-free operation.

    Overall, vacuum pumps are integral to chemical distillation processes as they create the necessary reduced pressure environment that enables distillation at lower temperatures. By using vacuum pumps, it is possible to achieve better separation, improve energy efficiency, and handle heat-sensitive compounds effectively. The choice of vacuum pump depends on factors such as the required vacuum level, the scale of the distillation process, and the nature of the compounds being distilled.

    vacuum pump

    What Is a Vacuum Pump, and How Does It Work?

    A vacuum pump is a mechanical device used to create and maintain a vacuum or low-pressure environment within a closed system. Here’s a detailed explanation:

    A vacuum pump operates on the principle of removing gas molecules from a sealed chamber, reducing the pressure inside the chamber to create a vacuum. The pump accomplishes this through various mechanisms and techniques, depending on the specific type of vacuum pump. Here are the basic steps involved in the operation of a vacuum pump:

    1. Sealed Chamber:

    The vacuum pump is connected to a sealed chamber or system from which air or gas molecules need to be evacuated. The chamber can be a container, a pipeline, or any other enclosed space.

    2. Inlet and Outlet:

    The vacuum pump has an inlet and an outlet. The inlet is connected to the sealed chamber, while the outlet may be vented to the atmosphere or connected to a collection system to capture or release the evacuated gas.

    3. Mechanical Action:

    The vacuum pump creates a mechanical action that removes gas molecules from the chamber. Different types of vacuum pumps use various mechanisms for this purpose:

    – Positive Displacement Pumps: These pumps physically trap gas molecules and remove them from the chamber. Examples include rotary vane pumps, piston pumps, and diaphragm pumps.

    – Momentum Transfer Pumps: These pumps use high-speed jets or rotating blades to transfer momentum to gas molecules, pushing them out of the chamber. Examples include turbomolecular pumps and diffusion pumps.

    – Entrapment Pumps: These pumps capture gas molecules by adsorbing or condensing them on surfaces or in materials within the pump. Cryogenic pumps and ion pumps are examples of entrainment pumps.

    4. Gas Evacuation:

    As the vacuum pump operates, it creates a pressure differential between the chamber and the pump. This pressure differential causes gas molecules to move from the chamber to the pump’s inlet.

    5. Exhaust or Collection:

    Once the gas molecules are removed from the chamber, they are either exhausted into the atmosphere or collected and processed further, depending on the specific application.

    6. Pressure Control:

    Vacuum pumps often incorporate pressure control mechanisms to maintain the desired level of vacuum within the chamber. These mechanisms can include valves, regulators, or feedback systems that adjust the pump’s operation to achieve the desired pressure range.

    7. Monitoring and Safety:

    Vacuum pump systems may include sensors, gauges, or indicators to monitor the pressure levels, temperature, or other parameters. Safety features such as pressure relief valves or interlocks may also be included to protect the system and operators from overpressure or other hazardous conditions.

    It’s important to note that different types of vacuum pumps have varying levels of vacuum they can achieve and are suitable for different pressure ranges and applications. The choice of vacuum pump depends on factors such as the required vacuum level, gas composition, pumping speed, and the specific application’s requirements.

    In summary, a vacuum pump is a device that removes gas molecules from a sealed chamber, creating a vacuum or low-pressure environment. The pump accomplishes this through mechanical actions, such as positive displacement, momentum transfer, or entrapment. By creating a pressure differential, the pump evacuates gas from the chamber, and the gas is either exhausted or collected. Vacuum pumps play a crucial role in various industries, including manufacturing, research, and scientific applications.

    China factory Stainless Steel Water Ring Vacuum Pump and Compressor for Corrosive Liquid   a/c vacuum pump		China factory Stainless Steel Water Ring Vacuum Pump and Compressor for Corrosive Liquid   a/c vacuum pump
    editor by Dream 2024-05-07

    China Professional Lgv Series Water Cooled Dry Screw Vacuum Pump for Oiling Machines with high quality

    Product Description

     

    Product Description

    Dry screw vacuum pump, is the use of a pair of screw, made in the pump shell synchronous high-speed reverse rotation of the effects of the suction and exhaust and suction device, 2 screw fine dynamic balancing correction, and is supported by bearings, is installed in the pump shell, between screw and screw has a certain gap, so the pump work, no friction between each other, smooth running, low noise, Working chamber without lubricating oil, therefore, dry screw pump can remove a lot of steam and a small amount of dust gas occasions, higher limit vacuum, lower power consumption, energy saving, maintenance-free and other advantages.Dry Oil-Free Air Cooling Screw Vacuum Pump ,This is an advanced and widely used vacuum pump at present, It is 1 of the best-selling products of our company.
     It adopts explosion-proof motor with high configuration, It has the characteristics of low noise, no oil and pollution, clean and high vacuum, simple and convenient use, operation and maintenance, Widely used in many industries, For example, oil and gas recovery, vacuum coating, biomedicine, food processing, single crystal furnace, vacuum forming, vacuum melting, electronic photovoltaic, semiconductor synthesis and many other industries are used.
    The dry oil-free screw vacuum pump produced by our company is divided into air cooling and water cooling according to the extraction rate, and there are many models for you to choose.

    Our Advantages

    There is no medium in the working chamber, which can obtain a clean vacuum.
    . No clearance between rotating parts, high speed operation, small overall volume.

    There is no compression in the gas, suitable for extraction of coagulable gas.

    Can remove a lot of steam and a small amount of dust gas occasions.
    . High vacuum, the ultimate vacuum up to 1 Pa.

    Screw material is high strength special material, material density, wear resistance, stable performance.

    No friction rotating parts, low noise.
    . Simple structure, convenient maintenance.
    Wider range of use: corrosive environment can be used.

    No oil consumption, no water.

    Pump gas directly discharged from the pump body, no pollution of water, no environmental pressure, more convenient gas recovery.

    It can be composed of oil-free unit with Roots pump and molecular pump.

     

    Typical Use

    ——Oil and gas recovery.    ——Biological medicine ——Food Processing —— Single crystal furnace
    ——Vacuum forming ——Vacuum flame refining ——Electronic photovoltaic. ——Semiconductor synthesis

    Product Parameters

     Air cooling   Dry screw vacuum pump

    Type
    (Air cooled series)
     Basic parameters 
    Pumping speed
    (m3/h)
    Presure limit(Pa)  Power (kW)  revolution (rpm) Inlet caliber
    (mm)
    outlet caliber (mm) Pump head weight
    (kg)
    noise dB(A) Overall dimension
    (length*width*height)
    (mm)
    LG-10 10 ≤5 0.75 2730 KF16 KF16 30 ≤ 72 655x260x285
    LG-20 20 ≤5 1.1 2840 KF25 KF25 55 ≤72 720x305x370
    LG-50 50 ≤10 2.2 2850 KF40 KF40 90 ≤75 920x350x420
    LG-70 70 ≤30 3 2850 KF40 KF40 110 ≤75 910x390x460
    LG-90 90 ≤30 4 2870 KF50 KF50 125 ≤80 1000x410x495

     

    Water cooling Dry screw vacuum pump

     

    Type                                                                             Basic parameters
    Pumping speed
    m3/h
    Presure limit(Pa)  Power (kW)  revolution (rpm) Inlet caliber
    mm
    outlet caliber mm Cooling water volume
    L/min
    noise dB(A) Overall dimension
    (length*width*height)
    mm
    LGV-180 180 5 4 2900 40 40 2 < 78 1157x375x734
    LGV-250 250 5 5.5 2900 50 40 5.5 <78 1462x417x820
    LGV-360 360 5 7.5 2900 50 40 4 W78 1462x455x820
    LGV-540 540 5 11 2900 65 50 8 W80 1578x543x860
    LGV-720 720 5 15 2900 80 65 10 <80 1623x562x916
    LGV-1100 1100 5 22 2900 100 80 14 w 80 1866x598x1050
    LG V-1800 1800 5 37 2900 150 100 20 w 80 2092×951 x 1150

    Characteristic Curve

     Air cooling   Dry screw vacuum pumpWater cooling Dry screw vacuum pump

    Detailed Photos

    Vacuum pumps are used in oiling machines

    Vacuum pumps are used in chemical plants

    General Manager Speech

    Deeply cultivate the vacuum technology, and research,develop and manufacture the vacuum equipment to provide the best solution in the vacuum field and make the vacuum application easier.

    Company Profile

    ZheJiang Kaien Vacuum Technology Co., Ltd. is a high-tech enterprise integrating R & D, production and operation of vacuum equipment. The company has strong technical force, excellent equipment and considerate after-sales service. The product manufacturing process is managed in strict accordance with IS09001 quality system. It mainly produces and sells screw vacuum pump, roots pump, claw vacuum pump, runoff vacuum pump, scroll pump, water ring vacuum pump, vacuum unit and other vacuum systems.

     New plant plHangZhou

    The company’s products have been for a number of food, medicine, refrigeration, drying plants and a number of transformer related equipment manufacturers for vacuum equipment. The products are widely used in vacuum drying and dehydration, kerosene vapor phase drying, vacuum impregnation, vacuum metallurgy, vacuum coating, vacuum evaporation, vacuum concentration, oil and gas recovery, etc.

    High precision machining equipment

    The company cooperates with many scientific research institutions and universities, such as ZheJiang University, China University of petroleum, ZheJiang Institute of mechanical design, etc.with colleges and universities to research and develop core technologies, and owns dozens of independent intellectual property patents.Our technology is leading, the product quality is stable, the product has a good reputation in China’s domestic market, is sold all over the country, and is exported to Europe, America, Africa, the Middle East and Southeast Asia,We adhering to the basic tenet of quality, reputation and service, the company takes leading-edge technology of vacuum pump as its own responsibility, and wholeheartedly serves customers of vacuum equipment application in various industries with rigorous working attitude and professional working style.

    Product quality wins consumer cooperationIn shipment ISO 9001

     

    Welcome to send your needs, we will provide you with the best service,

    provide the greatest help!!! 

    /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    After-sales Service: Lifetime Paid Service
    Warranty: One Year
    Oil or Not: Oil Free
    Structure: Screw
    Exhauster Method: Entrapment Vacuum Pump
    Vacuum Degree: High Vacuum
    Customization:
    Available

    |

    screw vane pump

    Are there energy-efficient options for screw vacuum pumps?

    Yes, there are energy-efficient options available for screw vacuum pumps. Here’s a detailed explanation of energy-efficient features and technologies that can be found in screw vacuum pumps:

    1. Variable Frequency Drives (VFD):

    Screw vacuum pumps equipped with Variable Frequency Drives (VFD) offer energy efficiency by allowing precise control of the pump’s rotational speed. VFDs adjust the motor speed according to the required vacuum level, resulting in reduced energy consumption compared to fixed-speed pumps. By matching the pump’s speed to the process demands, VFDs help optimize energy usage and minimize unnecessary energy losses.

    2. High-Efficiency Motors:

    Energy-efficient screw vacuum pumps often incorporate high-efficiency motors. These motors are designed to minimize energy losses and improve overall efficiency. High-efficiency motors typically comply with international efficiency standards, such as the International Electrotechnical Commission (IEC) standards or the National Electrical Manufacturers Association (NEMA) standards, and are classified with high efficiency ratings, such as IE3 or NEMA Premium.

    3. Advanced Control Systems:

    Modern screw vacuum pumps may feature advanced control systems that optimize energy consumption. These systems utilize intelligent algorithms to monitor and adjust the pump’s operation based on real-time process conditions. By continuously assessing the demand for vacuum and adapting the pump’s performance accordingly, advanced control systems help reduce energy waste and improve overall energy efficiency.

    4. Energy Recovery Systems:

    Some screw vacuum pumps are equipped with energy recovery systems that capture and utilize energy that would otherwise be wasted. These systems can include heat exchangers or energy regeneration units that repurpose excess heat from the pump’s operation. By utilizing this recovered energy for other processes, such as preheating or heating applications, energy recovery systems contribute to increased overall system efficiency.

    5. Optimized Pump Design:

    Manufacturers continuously work on optimizing the design of screw vacuum pumps to improve energy efficiency. This can involve reducing internal friction, optimizing rotor profiles, and minimizing leakage paths. These design enhancements aim to maximize the pump’s performance while minimizing energy losses, resulting in improved overall energy efficiency.

    6. Energy Monitoring and Analysis:

    Energy-efficient screw vacuum pumps often come with built-in energy monitoring and analysis features. These systems allow operators to monitor the energy consumption of the pump in real-time and analyze energy usage patterns. By identifying energy-intensive periods or inefficiencies, operators can make informed decisions to optimize the pump’s operation and further improve energy efficiency.

    7. Energy Efficiency Certifications:

    Energy-efficient screw vacuum pumps may carry energy efficiency certifications or labels, such as the ENERGY STAR® certification or the European Union’s Energy Efficiency Directive compliance. These certifications provide reassurance that the pump has undergone testing and meets specific energy efficiency criteria, providing confidence in its energy-saving capabilities.

    In summary, energy-efficient options for screw vacuum pumps exist and incorporate features such as Variable Frequency Drives (VFD), high-efficiency motors, advanced control systems, energy recovery systems, optimized pump design, energy monitoring and analysis capabilities, and energy efficiency certifications. By utilizing these energy-efficient options, industries can reduce energy consumption, lower operating costs, and minimize their environmental impact.

    screw vane pump

    What safety features should be considered when operating screw vacuum pumps?

    When operating screw vacuum pumps, it is important to consider several safety features to ensure the protection of personnel, equipment, and the surrounding environment. Here’s a detailed explanation of the safety features that should be considered:

    1. Overpressure Protection:

    Screw vacuum pumps should be equipped with overpressure protection mechanisms to prevent the system from exceeding safe pressure limits. This can include pressure relief valves or rupture discs that automatically release excess pressure to avoid equipment damage or catastrophic failures. It is essential to set the pressure relief devices at appropriate levels and regularly inspect and maintain them to ensure their proper functioning.

    2. Emergency Stop Button:

    An emergency stop button should be easily accessible near the screw vacuum pump or within the control panel. This allows operators to quickly shut down the pump in case of emergencies, such as equipment malfunction, safety hazards, or personnel injury. The emergency stop button should be clearly labeled, well-maintained, and tested regularly to ensure its effectiveness.

    3. Motor and Drive Protections:

    The motor and drive system of the screw vacuum pump should be equipped with safety features to prevent overheating, overloading, and electrical faults. This can include thermal overload protection, motor temperature sensors, current monitoring devices, and short-circuit protection mechanisms. These safety features help safeguard the integrity of the motor and drive system, reducing the risk of fire, electrical hazards, and equipment damage.

    4. Vacuum Level Monitoring:

    Monitoring the vacuum level is crucial for safe operation. Screw vacuum pumps should be equipped with vacuum gauges or sensors to provide real-time information on the vacuum level. This allows operators to ensure that the system is operating within the desired range and helps detect any abnormal conditions or leaks. Alarms or visual indicators can also be implemented to alert operators when the vacuum level deviates from the set parameters.

    5. Cooling and Ventilation:

    Screw vacuum pumps generate heat during operation, and adequate cooling and ventilation systems should be in place to prevent overheating. This can include fans, heat exchangers, or cooling fins to dissipate heat effectively. Proper ventilation should be ensured to prevent the accumulation of flammable or hazardous gases. It is important to regularly inspect the cooling and ventilation systems and clean or replace components as needed to maintain optimal performance and safety.

    6. Isolation and Lockout/Tagout:

    Isolation valves should be installed in the suction and discharge lines of screw vacuum pumps to allow for safe maintenance, repair, or shutdown procedures. Lockout/Tagout (LOTO) procedures should be followed when performing maintenance or service activities. This involves locking and tagging the energy sources, such as electrical power or compressed air, to prevent accidental startup or release of stored energy. Adequate training and awareness of LOTO procedures are essential for personnel safety.

    7. Safety Signage and Labels:

    Clear and visible safety signage and labels should be placed near the screw vacuum pump and control panel to provide important safety information, warnings, and operating instructions. This includes labels for emergency stop buttons, voltage ratings, hazardous areas, and safety precautions. Safety signs should comply with relevant standards and regulations and be regularly inspected to ensure their visibility and legibility.

    8. Operator Training and PPE:

    Proper training should be provided to operators working with screw vacuum pumps to ensure they understand the safe operating procedures, potential hazards, and emergency protocols. Operators should also wear appropriate personal protective equipment (PPE) such as safety glasses, gloves, and hearing protection, as required by the specific operating conditions and industry regulations.

    In summary, several safety features should be considered when operating screw vacuum pumps. These include overpressure protection, emergency stop buttons, motor and drive protections, vacuum level monitoring, cooling and ventilation systems, isolation and lockout/tagout procedures, safety signage, operator training, and the use of personal protective equipment. Implementing these safety features helps mitigate risks, protect personnel and equipment, and maintain a safe working environment during screw vacuum pump operation.

    screw vane pump

    Can screw vacuum pumps handle both dry and wet processes?

    Yes, screw vacuum pumps are capable of handling both dry and wet processes, making them versatile for a wide range of applications. The ability to handle both types of processes depends on the specific design and configuration of the screw vacuum pump, as well as any additional features or accessories that may be incorporated. Here’s a detailed explanation:

    Dry Processes:

    In dry processes, the screw vacuum pump operates without the presence of liquid or moisture. Dry screw vacuum pumps rely on tight clearances between the rotors (screws) and the pump housing to create an effective seal. This seal prevents gas or vapor from leaking back into the inlet or escaping to the atmosphere. The absence of liquid or moisture in the process stream helps maintain the integrity of the pump’s sealing mechanism and ensures reliable operation. Dry screw vacuum pumps are commonly used in applications where the process gas or vapor is predominantly dry and free from liquid carryover or condensable vapors.

    Wet Processes:

    In wet processes, the screw vacuum pump encounters liquids or moisture along with gas or vapor. These liquids can be in the form of condensable vapors, liquid carryover, or entrained liquid droplets. To handle wet processes, screw vacuum pumps may incorporate additional features or accessories to prevent damage, maintain performance, and ensure reliable operation. Some common methods used to handle wet processes include:

    • Liquid Seals: Certain screw vacuum pump designs utilize a liquid sealant to create a barrier between the process gas or vapor and the pump’s internal components. The liquid sealant helps prevent gas leakage, provides lubrication, and assists in sealing the clearances between the rotors and housing. This feature enables the pump to handle wet processes effectively by containing the liquid and maintaining proper sealing.
    • Separators and Filters: Screw vacuum pumps can be equipped with separators and filters to separate liquid droplets or solid particles from the gas or vapor stream. These components help protect the pump from potential damage caused by liquid or solid contamination and ensure the efficient operation of the pump.
    • Specific Design Considerations: Screw vacuum pump manufacturers may incorporate design modifications to enhance the pump’s ability to handle wet processes. This can include optimized clearances, corrosion-resistant materials, and specialized coatings or treatments to protect against liquid or moisture exposure.

    It’s important to note that the specific capabilities of a screw vacuum pump in handling wet processes may vary between different models and manufacturers. Therefore, when selecting a screw vacuum pump for a wet process application, it is advisable to consult the manufacturer’s specifications, recommendations, and any additional guidance provided to ensure the pump is suitable for the intended process conditions.

    In summary, screw vacuum pumps can handle both dry and wet processes, although the specific design and features of the pump may need to be considered for optimal performance in wet applications. Dry screw vacuum pumps are suitable for predominantly dry processes, while wet processes may require the use of liquid seals, separators, filters, or specialized design considerations to handle the presence of liquids or moisture effectively.

    China Professional Lgv Series Water Cooled Dry Screw Vacuum Pump for Oiling Machines   with high quality China Professional Lgv Series Water Cooled Dry Screw Vacuum Pump for Oiling Machines   with high quality
    editor by Dream 2024-05-07

    China high quality Cone Structure Cast Iron Similar to CHINAMFG Water Ring Vacuum Pump with Hot selling

    Product Description

    2BE3 liquid ring vacuum pump is CHINAMFG liquid ring vacuum pump and is used to transport gases and vapors, predominantly for intake pressures below atmospheric pressure. It is developed products based on old 2BE3 liquid ring vacuum pump. We offer same outline dimensions for bolt-on replacement and equivalent performances. It is designed to operate in demanding environments like the paper, power, mining and chemical process industries, and these pumps offer durability and reliability at a low cost of operation.
     

    Main Type:

    2BE33 series: 2BE3300, 2BE3306, 2BE3320, 2BE3326

    2BE34 series: 2BE3400, 2BE3406, 2BE3420, 2BE3426

    2BE35 series: 2BE3500, 2BE3506, 2BE3520,2BE3526

    2BE36 series: 2BE3600,2BE3606, 2BE3620, 2BE3626,2BE3 670, 2BE3676

    2BE37 series: 2BE3 720,2BE3726

    /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    Warranty: 1 Year
    Oil or Not: Oil
    Structure: Rotary Vacuum Pump
    Exhauster Method: Entrapment Vacuum Pump
    Vacuum Degree: High Vacuum
    Work Function: Mainsuction Pump
    Samples:
    US$ 10000/Piece
    1 Piece(Min.Order)

    |

    Customization:
    Available

    |

    vacuum pump

    Can Vacuum Pumps Be Used in the Automotive Industry?

    Yes, vacuum pumps are widely used in the automotive industry for various applications. Here’s a detailed explanation:

    The automotive industry relies on vacuum pumps for several critical functions and systems within vehicles. Vacuum pumps play a crucial role in enhancing performance, improving fuel efficiency, and enabling the operation of various automotive systems. Here are some key applications of vacuum pumps in the automotive industry:

    1. Brake Systems: Vacuum pumps are commonly used in vacuum-assisted brake systems, also known as power brakes. These systems utilize vacuum pressure to amplify the force applied by the driver to the brake pedal, making braking more efficient and responsive. Vacuum pumps help generate the required vacuum for power brake assistance, ensuring reliable and consistent braking performance.

    2. Emission Control Systems: Vacuum pumps are integral components of emission control systems in vehicles. They assist in operating components such as the Exhaust Gas Recirculation (EGR) valve and the Evaporative Emission Control (EVAP) system. Vacuum pumps help create the necessary vacuum conditions for proper functioning of these systems, reducing harmful emissions and improving overall environmental performance.

    3. HVAC Systems: Heating, Ventilation, and Air Conditioning (HVAC) systems in vehicles often utilize vacuum pumps for various functions. Vacuum pumps help control the vacuum-operated actuators that regulate the direction, temperature, and airflow of the HVAC system. They ensure efficient operation and precise control of the vehicle’s interior climate control system.

    4. Turbocharger and Supercharger Systems: In performance-oriented vehicles, turbocharger and supercharger systems are used to increase engine power and efficiency. Vacuum pumps play a role in these systems by providing vacuum pressure for actuating wastegates, blow-off valves, and other control mechanisms. These components help regulate the boost pressure and ensure optimal performance of the forced induction system.

    5. Fuel Delivery Systems: Vacuum pumps are employed in certain types of fuel delivery systems, such as mechanical fuel pumps. These pumps utilize vacuum pressure to draw fuel from the fuel tank and deliver it to the engine. While mechanical fuel pumps are less commonly used in modern vehicles, vacuum pumps are still found in some specialized applications.

    6. Engine Management Systems: Vacuum pumps are utilized in engine management systems for various functions. They assist in operating components such as vacuum-operated actuators, vacuum reservoirs, and vacuum sensors. These components play a role in engine performance, emissions control, and overall system functionality.

    7. Fluid Control Systems: Vacuum pumps are used in fluid control systems within vehicles, such as power steering systems. Vacuum-assisted power steering systems utilize vacuum pressure to assist the driver in steering, reducing the effort required. Vacuum pumps provide the necessary vacuum for power steering assistance, enhancing maneuverability and driver comfort.

    8. Diagnostic and Testing Equipment: Vacuum pumps are also utilized in automotive diagnostic and testing equipment. These pumps create vacuum conditions necessary for testing and diagnosing various vehicle systems, such as intake manifold leaks, brake system integrity, and vacuum-operated components.

    It’s important to note that different types of vacuum pumps may be used depending on the specific automotive application. Common vacuum pump technologies in the automotive industry include diaphragm pumps, rotary vane pumps, and electric vacuum pumps.

    In summary, vacuum pumps have numerous applications in the automotive industry, ranging from brake systems and emission control to HVAC systems and engine management. They contribute to improved safety, fuel efficiency, environmental performance, and overall vehicle functionality.

    vacuum pump

    Can Vacuum Pumps Be Used in the Production of Solar Panels?

    Yes, vacuum pumps are extensively used in the production of solar panels. Here’s a detailed explanation:

    Solar panels, also known as photovoltaic (PV) panels, are devices that convert sunlight into electricity. The manufacturing process of solar panels involves several critical steps, many of which require the use of vacuum pumps. Vacuum technology plays a crucial role in ensuring the efficiency, reliability, and quality of solar panel production. Here are some key areas where vacuum pumps are utilized:

    1. Silicon Ingot Production: The first step in solar panel manufacturing is the production of silicon ingots. These ingots are cylindrical blocks of pure crystalline silicon that serve as the raw material for solar cells. Vacuum pumps are used in the Czochralski process, which involves melting polycrystalline silicon in a quartz crucible and then slowly pulling a single crystal ingot from the molten silicon. Vacuum pumps create a controlled environment by removing impurities and preventing contamination during the crystal growth process.

    2. Wafering: After the silicon ingots are produced, they undergo wafering, where the ingots are sliced into thin wafers. Vacuum pumps are used in wire saws to create a low-pressure environment that helps to cool and lubricate the cutting wire. The vacuum also assists in removing the silicon debris generated during the slicing process, ensuring clean and precise cuts.

    3. Solar Cell Production: Vacuum pumps play a significant role in various stages of solar cell production. Solar cells are the individual units within a solar panel that convert sunlight into electricity. Vacuum pumps are used in the following processes:

    – Diffusion: In the diffusion process, dopants such as phosphorus or boron are introduced into the silicon wafer to create the desired electrical properties. Vacuum pumps are utilized in the diffusion furnace to create a controlled atmosphere for the diffusion process and remove any impurities or gases that may affect the quality of the solar cell.

    – Deposition: Thin films of materials such as anti-reflective coatings, passivation layers, and electrode materials are deposited onto the silicon wafer. Vacuum pumps are used in various deposition techniques like physical vapor deposition (PVD) or chemical vapor deposition (CVD) to create the necessary vacuum conditions for precise and uniform film deposition.

    – Etching: Etching processes are employed to create the desired surface textures on the solar cell, which enhance light trapping and improve efficiency. Vacuum pumps are used in plasma etching or wet etching techniques to remove unwanted material or create specific surface structures on the solar cell.

    4. Encapsulation: After the solar cells are produced, they are encapsulated to protect them from environmental factors such as moisture and mechanical stress. Vacuum pumps are used in the encapsulation process to create a vacuum environment, ensuring the removal of air and moisture from the encapsulation materials. This helps to achieve proper bonding and prevents the formation of bubbles or voids, which could degrade the performance and longevity of the solar panel.

    5. Testing and Quality Control: Vacuum pumps are also utilized in testing and quality control processes during solar panel production. For example, vacuum systems can be used for leak testing to ensure the integrity of the encapsulation and to detect any potential defects or leaks in the panel assembly. Vacuum-based measurement techniques may also be employed for assessing the electrical characteristics and efficiency of the solar cells or panels.

    In summary, vacuum pumps are integral to the production of solar panels. They are used in various stages of the manufacturing process, including silicon ingot production, wafering, solar cell production (diffusion, deposition, and etching), encapsulation, and testing. Vacuum technology enables precise control, contamination prevention, and efficient processing, contributing to the production of high-quality and reliable solar panels.vacuum pump

    Are There Different Types of Vacuum Pumps Available?

    Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

    Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

    1. Rotary Vane Vacuum Pumps:

    – Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

    – Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

    2. Diaphragm Vacuum Pumps:

    – Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

    – Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

    3. Scroll Vacuum Pumps:

    – Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

    – Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

    4. Piston Vacuum Pumps:

    – Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

    – Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

    5. Turbo Molecular Vacuum Pumps:

    – Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

    – Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

    6. Diffusion Vacuum Pumps:

    – Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

    – Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

    7. Cryogenic Vacuum Pumps:

    – Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

    – Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

    These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

    China high quality Cone Structure Cast Iron Similar to CHINAMFG Water Ring Vacuum Pump   with Hot selling	China high quality Cone Structure Cast Iron Similar to CHINAMFG Water Ring Vacuum Pump   with Hot selling
    editor by Dream 2024-05-06